摘要
本文证明了X3+1=DY2(0<D<100,不含平方因子,且被6k+1形素数整除,D≠7,14,35,37,38,5765,8691)无非平凡整数解。
In this paper we prove that X3+1=DY2 don't have nontrival integer solutions where D is squarefree integer which is divisible by primes of the form 6k|1 with D>0 and D≠7, 14, 35,37, 38, 57, 65, 86, 91.
出处
《哈尔滨师范大学自然科学学报》
1995年第4期32-36,共5页
Natural Science Journal of Harbin Normal University
关键词
整数解
PELL方程
丢番图方程
Diophantine equation
Pell equation
Nontrivial integer solution