摘要
设{Xn,n≥1}是在S=(1,2,…,m}中取值的一列随机变量,其联合分布为P(X1=x1,,…,Xn=Xn)=P(x1,…,Xn)>0,(Pn1,Pn2,…,Pnm)(n=1,2,…)是S上的一列分布,K∈S,Sn(k,w)是在序列X1(w),…,Xn(w)中出现k的次数,rn(w)=称为(Xi,1≤i≤n}相对于乘积分布的随机比较系数,Sn(k,w)─为Sn(k,w)与k相对于乘积分布的期望出现次数之差.本文的目的是要研究rn(w)与Sn(k,w)之间的某些极限关系.
Let {Xn,n≥1} be a Sequence variables taking values in S= (1, 2, …,m}with joint distribution P(X1=x1,…=, Xn=xn) = p(x1,…, xn)>0, and (Pn1,pn2, …,, pnm) (n= 1, 2,…) be a sequence of distributions on S, k∈s.sn(k,w) be the number of k in the sequence X1(w), …,Xn(w),rn(w) = is called random comparison cofficient of {Xi, 1≤i≤n), relative to the product destribution sn(k,w) - pik is the difference between Sn(k,w) and the expected numbers of relatine to the product distribution the purpose of this pater is to study the between rn(w) and Sn(k,w)-pik.
出处
《河北工学院学报》
1995年第3期85-95,共11页
Journal of Hubei Polytechnic University
基金
河北省自然科学基金