摘要
设M_n(f;x)是从L[0,1]→C[0,1]的Bernstein-Durrmeyer多项式算子,本文研究用多项式M_n(f;x)逼近不连续函数f的收敛性以及逼近度问题。
Let M_n (f; x) be Bernstein-Durrmeyer polynomial operators which is from L[0, 1 ]→C[0, 1]. In this paper, we study the problems of convergence and approximation degree by polynomials M_n (f; x) approximating discontinuous functions.
关键词
B-D多项式
逼近
不连续函数
Bernstein-Durrmeyer polynomials
Approximation
The first kind discontinuity
The functions of bounded variation