期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
关于(l^0(S),‖·‖_1)的注记
A NOTION ABOUT (l ̄0(S), ‖·‖_1)
下载PDF
职称材料
导出
摘要
在有界Hamel基的局部凸空间中,给出了(l0(S),)。
In lc spaces with Hamel basis, some resultS about (10(S), ‖. ‖1) were proved.
作者
刘健
机构地区
黑龙江商学院基础部
出处
《黑龙江商学院学报》
1995年第2期56-58,共3页
Journal of Harbin Commercial University(Natural Sciences Edition)
关键词
Hamel基
连续线性映射
桶空间
拓扑线性空间
Hamel basis, continous linear map, barrel space
分类号
O177.3 [理学—基础数学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
0
共引文献
0
同被引文献
0
引证文献
0
二级引证文献
0
1
林群雄,吴珍莺,钟怀杰.
关于Hamel基的若干注记[J]
.福建师范大学学报(自然科学版),2009,25(4):9-12.
2
熊昌萍,朱军.
无限维Banach空间的一个特征[J]
.新疆大学学报(自然科学版),1998,15(3):29-30.
3
冯良贵,郝志峰.
线性空间的Hamel基及维数[J]
.数学理论与应用,1999,19(4):130-132.
被引量:2
4
石国毅.
商空间几何性质注记[J]
.大学数学,1995,16(1):59-61.
5
杨姗姗.
局部凸空间l^0(S)的若干性质[J]
.黑龙江商学院学报,1995,11(4):56-58.
6
安杨,赵福军.
赋范空间中凸泛函Lipschitz连续性与函数有下界的关系[J]
.应用泛函分析学报,2012,14(4):362-364.
7
IleanaDiamandescu,AdrianDuma.
一个等距于其Hamel基的可分赋范空间(英文)[J]
.南开大学学报(自然科学版),2007,40(4):110-112.
8
程丛电.
赋范向量空间的注记[J]
.沈阳师范学院学报(自然科学版),2001,19(3):1-7.
9
王宪清.
Hilbert-Schmidt算子的注记[J]
.新疆大学学报(自然科学版),1997,14(2):27-29.
10
丁巍巍,陶元红,李嫦娥.
多体量子系统密度矩阵的表示[J]
.吉林大学学报(理学版),2013,51(5):831-835.
被引量:1
黑龙江商学院学报
1995年 第2期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部