摘要
价是交换结合Scheme的重要数量特征,有较强的组合性质,利用价来讨论某些交换结合Scheme的构造与性质,是一个常用的方法.设=(X,{Ri}i=0,1,...,d)是一个类d的交换结合Scheme.k0,k1,...,kd是的价.本文证明了,若k1=k2=...=kd=2,则 是对称结合Scheme.
Valencies are important parameters of commutative association schemes which have strong combinatorical properties,and it is usual to make use of valencies to study the structure and properties of commutative association schemes.Let =(X,R,i=0,1,....d) be a commutative association scheme with class d.and k0,k1,...,kd be valencies of.In this paper we have proved that if k1=k2=...=kd=2,is symmetric.
出处
《湖北大学学报(自然科学版)》
CAS
1995年第1期33-38,共6页
Journal of Hubei University:Natural Science
关键词
交换结合Scheme
价
邻接矩阵
结合Scheme
Commutative association scheme Symmetric association scheme Valencies Adjacency matrices