期刊文献+

高导数量子引力的发散分析 被引量:1

DIVERGENCE ANALYSIS FOR HIGHER-DERIVATIVE QUANTUM GRAVITY
下载PDF
导出
摘要 通过检查4-导数量子引力的Feynman规则,分析理论的各种发散图,发现4-导数量子引力理论的彻底可重整性需要进一步证明,并指出不能期望通过在作用量中加入Riemann张量的更高次幂项来彻底解决引力的重整化问题. By examining the Feynman rules and divergence loops for the theory of the 4-derivative quantum gravity, we find that the exact renormalizibility of the theory need still to be proven, and show that renormalization of gravity can't be completely resolved by introducing higher.order terms of Riemann tensors in the action.
出处 《湖北大学学报(自然科学版)》 CAS 1995年第3期235-241,共7页 Journal of Hubei University:Natural Science
关键词 高导数引力 发散分析 可重整性 高导数量子引力 derivative gravity Higher-derivative gravity Divergence analysis Renormalizibility
  • 引文网络
  • 相关文献

参考文献1

二级参考文献2

共引文献1

同被引文献13

  • 1T D Lee.粒子物理和场论简引[M].汤拒非,庆承瑞,朱重远.北京:科学出版社,1984.
  • 2J D比约肯,S D 德雷尔.相对论量子场[M].汪克林,郑希特,章正刚.北京:科学出版社,1984.
  • 3Jean-Paul Blaizot,Andreas Ipp.Ramón Méndez-Galain,Nicolás Wschebor,Perturbation theory and non-perturbative renormalization flow in scalar field theory at finite temperature[J].Nuclear Physics A,2007,784:376-406.
  • 4Christian Brouder,William Schmitt.Renormalization as a functor on bialgebras[J].Journal of Pure and Applied Algebra,2007,209:477-495.
  • 5Ulrich Schollwck.Progress in density matrix renormalization:What quantum information is teaching us.Journal of Magnetism and Magnetic Materials[M].In Press,Corrected Proof,Available online,2006.
  • 6A Shindler,M Guagnelli,K Jansen,et al.Non-perturbative renormalization of moments of parton distribution functions[J].Nuclear Physics B-Proceedings Supplements,2004,129-130:278-280.
  • 7ЛД朗道,ЕМ栗弗席茨.理论物理简明教程(第2卷量子力学)[M].李复龄.北京:高等教育出版社,1990.
  • 8L A Zadeh.Aspects of Network and System Theory[M].R E Kalman,N DeClaris,New York:Rinehart & Winston,1971.
  • 9L A Zadeh.Systems Approaches and Environment Problems[M].H Gottinger.Gottingen:Vandenhoeck & Ruprecht,1974.
  • 10J D Bjorken,S D Drell.Relativistic Quantum Mechanics[M].Mc Graw-Hill,1965.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部