摘要
MKdV方程和SG方程是描述非线性波动具有代表性的两个重要方程。本文通过对这两个方程进行小振幅下的Fourier展开分析和呼吸子解分析,得出在小振幅慢变位相情形下都满足非线性Schrdinger方程,从而揭示了非线性波动方程的一些共同特性和内在联系.
The MKdV equation and SG equation are two typical important equations describing nonlinear wave phenomena. In the present paper.these two equations are discussed by means of Fourier analysis and decomposition of breather solution under the condition of small-amplitude. It is found that in the case of small-amplitude and slawly varying phase both equations can be related to nonlinear Schrdinger equation. Then some homogeneity and intrinsical relations of nonlinear wave equation are revealed.
出处
《湖南师范大学自然科学学报》
CAS
1995年第1期21-24,共4页
Journal of Natural Science of Hunan Normal University
关键词
非线性
孤立子
薛定谔方程
波动方程
nonlinear partial differential equation
solitons
Fourier analysis