摘要
探讨了卷积(卷积和)的门函数(门序列)解析算法的因果性;根据含参量的门函数(门序列)的定义条件,着重论述了其在因果系统及非因果系统的卷积(卷积和)之解析式中的普遍存在原理。结论是:无论是在因果系统还是非因果系统中,卷积的门函数解析算法及离散系统卷积和的门序列解析算法是普遍适用的;杜哈梅尔积分的全解析算法也是普遍适用的。
This paper is concerned with the causality of an analytic algorithm for convolution bythe gate function existing in its analytic expression,The discussion is based on the definitionof convolution and the definitive conditions for the gate function containing parameter,Theexistence of such a gate function in an analytic expression for the convolution integral of acausal system and noncausal system is proved.It is concluded that,in both causal and non-causal systems,the analytic algorithms for convolution by the gate function are all feasibleand concise, as are those for convolution sum by gate sequence and for Duhamel integral.
出处
《华中理工大学学报》
CSCD
北大核心
1995年第4期44-47,共4页
Journal of Huazhong University of Science and Technology
关键词
门函数
门序列
因果性
卷积和
工程数学
gate function containing parameter
gate sequence containing parameter
causality
unit sample response
convolution sum