摘要
本文考虑曲线积分的数值计算,其中曲线是光滑或分段光滑的,但曲线的参数方程是不知道的.先对曲线用分段的多项式插值,再用数值积分,通过误差分析建立了所需高斯积分点的数目与插值节点数之间的关系.文章最后给出了数值例子,数值结果与理论结果完全一致,证实了理论结果的正确性.
We consider the computation of the curvilinear integrals over a smooth orpiecewise smooth curve,where an explicitly differentiable parametrization is not availiable.A parametrization is replaced by a piecewise polynomial interpolant of it and a Gaussian inte-gration formula is used.On the basis of error analysis,the relation between the number ofGaussian integration nodes and interpolation nodes is set up.A numerical example is givenand the numerical results are consistent with the theoretical results, so the validity of thetheoretical results is confirmed.
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
1995年第2期267-272,共6页
Journal of East China University of Science and Technology
关键词
误差分析
插值
曲线积分
高斯积分
error analysis
interpolation
curvilinear integrals
Gaussian integration