期刊文献+

神经网络反向传播模型用于Cm_I的能级分类

Classification of Cm_Ⅰ Energy Levels Using the Back-propagation Neural Network
下载PDF
导出
摘要 将神经网络反向传播算法应用于Curium的关于组态的分类计算。用4个特征变量(能级值、郎德g日子、J量子数和同位素位移)表征每一个能好。为检验神经网络预报能力,采用leave-n-out方法(奇宇称n=1,偶宇称n=5)对所有已知实验样本进行了预报。其中奇、偶宇称能级预报正确率分别为92.7%和97.4%。利用相同的神经网络结构,得到了12个奇宇称和42个偶宇称的未知能级的预报结果。 The back-propagation neural network was applied to the classification of the Cm_Ⅰ energy levels according to configuration. Four characteristic features,the energy level,Lande g factor,quantum number J,and isotope shift,were used to describe each level.To evaluate the predictive ability of the network,the leave-n-out method(n=1 for odd parity,and n=5 for even parity)was used to predict all of the levels.The predictive rates of odd and even levels are 92.7%and 97.4%,respectively. Using the same neural network architecture,prediction of containing 12-odd-parity and 42-even-partity unknow levels was obtained.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 1995年第4期523-528,共6页 Journal of East China University of Science and Technology
关键词 神经网络 反向传播 原子光谱 能级 neural network classification prediction configuration back-propagation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部