摘要
本文基于集合分形的定义,对“倍周期分支通向混沌”这一途径的分形度量──分形示性数及分形维数进行数值分析,揭示倍周期分支进入混沌时的分形维数为d_Fd_F(X∞)=0.5070968…具有普适性。
Based on the defination of set fractal a quantitative analysis is made towards the route of 'Period-doubling leads to Chaos' by calculecting its fractal measure fractal characteristic number and fractal dimension. It is discovered that the fractal dimension is 0.5 070968…. which is universal when it enters into chaos through Period-doubling.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
1995年第2期27-35,共9页
Journal of East China Normal University(Natural Science)
关键词
集合分形
倍周期分支
混沌
分形度量
set fractal
period-doubling
chaos
fractal characteristic number fractal dimension