期刊文献+

安培力补偿型扭称法测量万有引力常数 被引量:5

Tofsion Balance Compensated with Ampere Force for Measuring the Gravitational Constant
下载PDF
导出
摘要 针对传统卡文迪许扭称方法中存在的缺点,提出了用于测量引力常数的新型补偿型扭称。其基本原理是利用电流环之间的安培力补偿扭称的检验质量与吸引质量之间的万有引力,从而使扭称保持平衡状态。通过测量电流环中的电流大小和相关参量,可确定引力常数G。该方法的优点在于可避免扭称偏转角度的绝对测量,能消除悬线的非线性影响,并且非常容易测量出检验质量和吸引质量的间距。 In view of the shortcoming of the traditional Cavendish torsion balance, a new kind of compensated torsion balance for measuring the gravitational constant is proposed based onthe principle that the gravitational force between the test mass of torsion balance and the at-tracting mass is to be compensated by the Ampere force between current rings so that thetorsion balance will be held in the equilibrium state, Then the gravitational constant G canbe determined by measuring the currents in the rings and other related parameters. The ad-vantage of this method lies in that the absolute measurement of the deflection angle of thetorsion balance is avoided and the nonlinear effect of the suspension wire is eliminated whilethe distance between the test mass and attracting mass can be easily measured.
作者 罗俊 范淑华
出处 《华中理工大学学报》 CSCD 北大核心 1995年第10期1-3,共3页 Journal of Huazhong University of Science and Technology
基金 国家自然科学基金
关键词 补偿型扭称 安培力 测量 万有引力常数 牛顿 compensated balance gravitational constant current rings Ampere force measuring accuracy
  • 相关文献

参考文献3

二级参考文献1

共引文献8

同被引文献29

  • 1唐琪珊.洛伦兹力公式协变性的一种证明[J].大学物理,1996,15(3):46-47. 被引量:3
  • 2张祥雪,程艳霞,范秀华,刘家冈.洛伦兹力可看作静止电荷所受电场力的相对论效应——兼论洛伦兹力公式具有与库仑定律相同的精确度[J].物理与工程,2006,16(4):26-28. 被引量:6
  • 3刘宏亚 张平华 秦荣先.实验室距离下检验牛顿反平方定律[J].科学通报,1982,27(20):1229-1230.
  • 4Boer H, Haars H, Michaelis W. A new experiment for the determination of the Newtonian gravitational constant. Metrologia, 1987, 24: 171-174
  • 5Walesch H, Meyer H, Piel H, et al. The gravitational force at mass separations from 0.6 m to 2.1 m and the precise measurement of G. IEEE Trans Instrum Meas, 1995, 44(2): 491-493
  • 6Schumacher A, Kleinevoss U, Schutt H, et al. Determination of the gravitational constant G using a Fabry-Perot pendulum resonator. Precis Electromagn Meas Digest, 1998. 144-145
  • 7Fitzgerald M P, Armstrong T R. Newton's gravitational constant with uncertainty less than 100 ppm. IEEE Trans Instrum Meas, 1995, 44(2): 494-497
  • 8Michaelis W, Haars H, Augustin R. A new precise determination of Newton's gravitational constant. Metrologia, 1995, 32:267-276
  • 9Schurr J, Nolting F, Kundig W. Gravitational constant measured by means of a beam balance. Phys Rev Lett, 1998, 80:1142-1145
  • 10Luo J, Hu Z K, Fu X H, et al. Determination of the Newtonian gravitational constant G with a nonlinear fitting method. Phys Rev D, 1998, 59:042001

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部