摘要
证明了Liénard方程当F′(X)具有两个零点时在原点外围最多有一个或两个极限环,依据F(X)有一个或三个零点.并由此证明了(Ⅱ)(m=0)当a2·十a4<0,2S/a>1时在原点外围最多有两个极限环.
in this paper, we discuss the Lienard equationIt is proved that if F (x) has two zero points, this equation has at most one or twolimit cycles surrounding the origin, according as F(x) has one or three zero points.And we prove the quadratic system (Ⅱ )(m=0) has at most two limit cycles surrounding the origin by using this result, for a2 + a4 < 0, 2s/a > 1.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
1995年第4期423-427,共5页
Journal of Central China Normal University:Natural Sciences
关键词
极限环
奇点
林纳方程
Liénard equation
limit cycle
singular point