期刊文献+

薄板几何非线性中的精化元方法及膜闭锁问题 被引量:1

Refined element method and membrane locking for geometric nonlinear analysis of thin plates
下载PDF
导出
摘要 基于放松单元间协调条件的大变形变分原理和全局拉格朗日方法,推导了几何非线性精化三角形薄板单元。对几何刚度矩阵,通过引入特殊的单元位移函数,有效地消除了薄板弯曲问题中伴生的膜闭锁现象。数值结果表明该单元在几何非线性分析中既能消除膜闭锁又具有较高精度。 Based on the total Lagrangian description and large deformation variational principlewith releasing constraint conditions of inter-elements continuity,A geometric nonlinear anal-ysis of refined triangular thin bending element is newly developed.By introducing special ele-ment displaeement functions,the additional menbrance locking phenomenon is deleted effec-tively in the geometrical etiffness matrix. The numerical results show this element can deletemembrance locking and obtain solutions of high accuracy in the geometrical nonlinear analy-sis.
出处 《计算结构力学及其应用》 CSCD 1995年第1期102-109,共8页
基金 国家自然科学基金
关键词 薄板 几何非线性 膜闭锁 精化元 弹性力学 thin plate/geometric nonlinear triangular element refines direct stiffness method membrance locking.
  • 相关文献

同被引文献3

  • 1Hao Yu,Compos Struct,1994年,28卷,375页
  • 2唐立民,计算结构力学及其应用,1984年,1卷,3期,1页
  • 3朱颐龄,复合材料力学(译),1981年

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部