期刊文献+

协方差矩阵奇异情况下的最优投资组合 被引量:18

Optimal Mean-Variance Portfolio with Semi-Positive Variance-Covariance Matrix
下载PDF
导出
摘要 本文讨论了在方差-协方差矩阵半正定条件下,Markowitz均值-方差最优投资组合模型的求解问题,利用主成分分析法得到了解析解,从而弥补了原模型的一个缺陷. An approach based on principal component analysis is proposed for solving the problem of optimal portfolio in the case with semi-positive variance-covariance matrix, Analytic solution is obtained. This result fills up the gap of the original Markowitz's model.
出处 《应用概率统计》 CSCD 北大核心 2005年第3期244-248,共5页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(10171066)上海市科委重点项目(02DJ14063).
  • 相关文献

参考文献8

  • 1Markowitz, H., Portfolio selection, Journal of Finance, 7(1)(1952), 77-91.
  • 2Markowitz, H., Portfolio Selection: Efficient Diversification of Investment, Wiley, New York, 1952.
  • 3Merton, R.C., An analytic derivation of the efficient portfolio frontier, Journal of Financial and Quantitative. Analysis, 7(1972), 1851-1872.
  • 4Fama, E., Foundation of Finance, Basic Books, Inc, Publishers, 1976.
  • 5Korn, R., Optimal Portfolio, World Scientific Publishing Co. Pte. Ltd, Singapore, 1997.
  • 6Buser, S.A., Mean-variance portfolio selection with either a singular or nonsingular variancecovariance matrix, Financial and Economic Research Section Division of Research, HB-135-B88, 1976.
  • 7Jurczenko, E. and Maillet, B., The three-moment CAPM: Theoretical Foundations and an Asset Pricing Model Comparison in a Unified Framework, Developments in Forecast Combination and Portfolio Choice, Eds by C. Dunis etc, John Wiley & Sons, 239-273, 2001.
  • 8北京大学数学系几何与代数教研室代数小组编.高等代数(第二版)[M].高等教育出版社,2000..

同被引文献109

引证文献18

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部