期刊文献+

低强度微波电磁场作用下菠菜和烟草光合细胞叶绿素荧光动力学过程及光合色素系统的差异 被引量:5

The Difference of Chlorphyll Fluorescence Dynamics Process and the System of Photosynthetic Pigment in Leaf of Spinach and Tobacco Under the Action of Low Level Microwave Electromagnetic Field
下载PDF
导出
摘要 在300MHz低强度微波电磁场作用下,菠菜和烟草叶片光合细胞叶绿素荧光动力学过程和光合色素呈现不同的变化.菠菜的荧光动力学参量F0和FVI/FV减小,FV/F0、ΔFV/T和FV/Fm升高;烟草的荧光动力学参量F0升高,FVI/FV没有明显变化,FV/F0、ΔFV/T和FV/Fm降低.在微波作用下,菠菜和烟草叶片的光合色素系统的变化也有差异,菠菜和烟草的叶绿素含量均降低,但菠菜的类胡萝卜素含量明显升高.这些结果表明,低强度微波电磁场使烟草叶片光合机构受到抑制,光合色素系统受到破坏,因而光合作用下降;菠菜则通过光合细胞的光合机构中PSⅡ活性中心异质性的转变和光合色素中类胡萝卜素含量的升高来适应微波辐射的环境,使光合作用维持在较高水平. Under the action of low level microwave electromagnetic field of 300MHz, the changes of chlorophyll fluorescence dynamics process and photosynthetic pigment in leaf of spinach and tobaccoare are different. When the fluorescence dynamics parameters F0 and FVI/FV of spinach decrease,AFV/T and FV/Fm increase. The fluorescence dynamics parameter F0 of tobacco increases, while AFV/T and FV/Fm decrease. There is a difference between photosynthetic pigment of spinach and tobacco. The content of chlorophyll in leaf of spinach and tobacco decrease, but the content of carotenoid in leaf of spinach increase. These results show that low level microwave electromagnetic field leads to the decrease of potential active of reaction center PS Ⅱ and the photochemical efficiency of PS Ⅱ in leaf of tobacco. Spinach can keep the photosynthesis in leaf through the change of heterogeneity of PS Ⅱ and the increases of carotenoid.
出处 《光子学报》 EI CAS CSCD 北大核心 2005年第7期1023-1027,共5页 Acta Photonica Sinica
基金 国家自然科学基金(编号:50177010) 广东省自然科学基金(编号:010297)资助项目
关键词 微波 荧光动力学 光合色素 菠菜 烟草 Microwave Chlorophyll fluorescence dynamics Photosynthetic pigment Spinach Tobacco
  • 相关文献

参考文献8

二级参考文献60

  • 1习岗,张振瀛.植物抗逆性研究的物理学方法[J].物理,1997,26(3):162-166. 被引量:18
  • 2[1]Frohlich H. What are non-thermal electric biological effects? Bioelectromagnetics,1982,3(1): 45~46
  • 3[2]Chen GZ(陈国璋),Chen XH(陈惠晓). Hot spot of bioelectromagnetics-nonthermal effects. Physics(物理), 1998,27(3):151~155
  • 4[4]Burkhard M, Pokovic K, Gnos M, Schmid T, Kuster N. Numerical and experimental dosimetry of Petri dish exposure setups. Bioelectomagnetics,1996,17(4):483~493
  • 5[5]Linz KW, von Westphalen C, Streckert J, Hansen V, Meyer R. Membrane potential and currents of isolated heart muscle cells exposed to pulsed radio frequency fields. Bioelectomagnetics, 1999, 20(8):497~511
  • 6[6]Osepchuk JM. Biological effects of electromagnetic radiation. New York: IEEE Press, 1984.205~210
  • 7[8]Ross SM. Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics, 1990,11(1): 27
  • 8[9]Blackman CF, Benane SG, Kinney LS, House DE. Effects of ELF fields on calciumion efflux from brain tissue in vitro. Radiat Res, 1982,92(3): 510~520
  • 9[10]Lindstrom E, Lindstrom P, Berglund A, Hansson K, Lundgen E. Intracellular calcum oscillations induced in a T-cell-line by a weak 50Hz magnetic field. J Cell Physiol, 1993,156(1): 395~398
  • 10[11]Webb SJ, Stoneham ME, Frohlich H. Evidence for non-thermal excitation of energy levels in active biological systems. Phys Letts, 1977,63A(3): 407~408

共引文献551

同被引文献88

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部