期刊文献+

纳米磨料硬度对超光滑表面抛光粗糙度的影响 被引量:13

Effect of hardness of nano-sized abrasives on roughness of polished super-smooth surface
下载PDF
导出
摘要 通过均相沉淀法制备了纳米CeO2和Al2O3粉体,研究了在相同抛光条件下纳米CeO2、Al2O3和SiO2磨料对硅片的抛光效果,用原子力显微镜观察了抛光表面的微观形貌并测量其表面粗糙度。结果表明:纳米CeO2磨料抛光后表面具有更低的表面粗糙度,在5μm×5μm范围内表面粗糙度Ra值为0.240nm,而且表面的微观起伏更趋向于平缓;考虑了纳米磨料在抛光条件下所发生的自身变形,其变形量相当于一部分抵消了纳米磨料嵌入基体材料的切削深度,而这个切削深度最终决定了抛光表面的粗糙度;分析指出这个变形量与纳米磨料的硬度成反比,硬度低的纳米磨料由于自身变形量大,导致切削深度小,抛光后表面的粗糙度值低。解释了在相同的抛光条件下不同硬度的纳米磨料具有不同的抛光表面粗糙度的原因。 Nano-powder of CeO2 and Al2O3 were prepared via homogenous precipitation,and the different polishing behavior of nano-CeO2, nano-Al2O3 and nano-SiO2 abrasives under the same polishing condition were studied by atomic force microscopy (AFM). The surface roughness of the wafer polished by nano-CeO2 is lower than that polished by the nano-Al2O3 and nano-SiO2, and its surface undulation is smaller. The influence of the deformation of the abrasive particle on polishing mechanism is considered for the first time. The deformation of the abrasive counteracts part of the cutting depth which determines the roughness of the polished surface. The deformation amount is in proportion to the hardness of the abrasives. The reason why the abrasives with different hardness has different polishing behavior is analyzed.
作者 陈志刚 陈杨
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2005年第7期1075-1080,共6页 The Chinese Journal of Nonferrous Metals
基金 江苏省自然科学基金资助项目(BK2002010) 江苏省高技术资助项目(BG2004022)
关键词 纳米磨料 硬度 粗糙度 超光滑表面 抛光 nano-sized abrasives hardness roughness super-smooth surface polishing
  • 相关文献

参考文献13

  • 1何进,陈星弼,杨传仁,王新.直接键合硅片的亲水处理及其表征[J].半导体技术,1999,24(5):23-25. 被引量:16
  • 2陈雪梅,陈彩风,陈志刚.超声沉淀法制备纳米Al_2O_3粉体[J].中国有色金属学报,2003,13(1):122-126. 被引量:33
  • 3高宏刚,曹健林,陈斌.浮法抛光超光滑表面加工技术[J].光学技术,1995,21(3):40-43. 被引量:18
  • 4Asadchikov V E, Kozhevnikov I V, Krivonosov Y S,et al. Application of X-ray scattering technique to the study of supersmooth surfaces [J]. Nuclear Instruments and Methods in Physics Research Section A,2004, 530(3) : 575 - 595.
  • 5Yuan J L, Zhao P, Ruan J, et al. Lapping and polishing process for obtaining super-smooth surfaces ofquartz crystal [J]. Journal of Materials Processing Technology, 2003, 138(3) : 116 - 119.
  • 6Shi X K, Hua M, Cheung E H M, et al. Automatic recognition and evaluation of micro-contaminant particles on ultra-smooth optical substrates using image analysis method[J]. Optics and Lasers in Engineering,2004, 45(6): 901-917.
  • 7Luo J F, Doronfeld D A. Material removal regions in chemical-mechanical planarization for submicron inte-grated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area[J].IEEE Transactions on Semiconductor Manufacturing, 2003, 16(1): 45-56.
  • 8Park S S, Cho C H, Ahy Y. Hydrodynamic analysis of chemical mechanical polishing process[J]. Tribology International, 2000, 33(10): 723- 730.
  • 9Cho C H, Park S S, Ahn Y. Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical polishing[J]. Thin Solid Films, 2001, 389(1 - 2) : 254- 260.
  • 10Zhao Y W, Chang L. A micro-contact and wear model for chemical-mechanical polishing of silicon wafers[J].Wear, 2002, 252(3 - 4) : 220- 226.

二级参考文献6

共引文献82

同被引文献145

引证文献13

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部