期刊文献+

一种偏置场环境下的模糊聚类分割算法 被引量:1

A Modified Fuzzy C-Means Segmentation Algorithm under Bias Field
下载PDF
导出
摘要 针对偏置环境下图像分割问题,提出了一种基于偏置场估计的模糊聚类算法。通过建立依赖于偏置场的模糊聚类目标函数,提出了模糊聚类隶属函数和偏置场估计的迭代算法。该方法较好地处理了传统模糊聚类在偏置场存在的情况下图像分割精度下降问题。实验结果表明,该算法能有效分割具有偏置噪声的图像,其分割精度优于传统模糊聚类法。 A novel FCM segmentation algorithm is proposed based on bias field estimation with respect to the segmeritation issue of defocused images with illumination patterns under bias field.Firstly the recursive algorithms are provided for bias field estimation,clustering centers and fuzzy clustering function based on intensity and average intensity of pixel neighborhood based on object function of image model with intensity inhomogeneity,A dilation operator is then used on initial segmented image for further refinement,The problem of reduced segmentation accuracy with traditional FCM is well solved by the proposed approach.Experiment results show that the proposed method is effectiveness for illumination pattern based images under bias field and of higher accuracy rates than traditional FCM.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第22期27-28,32,共3页 Computer Engineering and Applications
基金 国家自然科学基金(编号:60234030) 河南省教育厅自然科学基金资助(编号:20025100006)
关键词 模糊聚类 图像分割 偏置场 fuzzy clustering,image segmentation,bias field
  • 相关文献

参考文献4

  • 1M Watanabe, S K Nayar. Rational Filters for Passive Depth from Defocus [ J ].International Journal of Computer Vision, 1998; 27 ( 3 ):203~255.
  • 2章毓晋.图像处理和分析[M].北京:清华大学出版社,2002-05..
  • 3D P Mukherjee,P Pal,J Das. Sodar image segmentation by fuzzy cmeans [J ].Signal Processing, 1996; 54:295~301.
  • 4Mohamed N Ahmed,Sameh M Yamany,Nevin Mohamed et al.A Modified fuzzy C-means algorithm for bias field Estimation and Segmentation of MRI data[J].IEEE trans on Medical Imaging,2002;21 (3): 193~200.

共引文献16

同被引文献14

  • 1Bezdek J C. A Convergence Theorem for The Fuzzy ISODATAClustering Algorithm[ J]. IEEE PAMI, 1980,1 (2) : 1-8.
  • 2Keh-Shih Chuang, Hong-Long Tzeng,Sharon Chen, el al. Fuzzy c-Means Clustering wilh Spatial Information for Image Segmentation[J]. Computerized Medical Imaging and Graphics, 30 ( 2006) : 9 -15.
  • 3Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models[J]. Internationa] Journal of Computer Vision, 1988,1(4): 321 —331.
  • 4Xu C,Prince J L. Gradient Vector Flow:A New External Force forSnakes [ C ] //Computer Vision and Pattern Recognition, 1997. Pro-ceedings ,1997 IEEE Computer Society Conference on. IEEE,1997:66-71.
  • 5Dunn J C. A Fuzzy Relative of The ISODATA Process and Its Usein Detecting Compact Well Separated Clusters[ J]. Journal of Cy-bernetics ,1973,3(3):32-57.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Al-gorithms [ M]. New York : Plenum Press, 1981.
  • 7Pham D L,Prince. Adaptive Fuzzy Segmentation of Magnetic Reso-nance Images [ J ] . IEEE Transactions on Medical Imaging, 1999,18(9) :737-752.
  • 8Renjie He,Sushmita Datta,Balasrinivasa Rao Sajja. Adaptive withContextual Constrains for Segmentation of Multi-Spectral MRI[ J].Conf Proc IEEE Eng Med Biol Soc,2004(3) : 1660- 1663.
  • 9李志梅,肖德贵.快速模糊C均值聚类的图像分割方法[J].计算机工程与应用,2009,45(12):187-189. 被引量:25
  • 10裴红利,喻罡,邓振生.基于多尺度连接模型的脑MRI模糊分类[J].计算机工程,2010,36(4):174-176. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部