摘要
在文献[1]的基础上,首次提出混合广义自回归条件异方差(MixtureGeneralizedAutoregressiveConditionalHeteroscedasticModel简记MGARCH)模型;给出并证明了MGARCH模型的一阶平稳性的充分必要条件及二阶平稳性的充分条件;给出该模型参数估计的EM算法;利用BIC定阶准则对MGARCH模型的各成份进行定阶;计算结果表明该模型对金融非线性时间序列中存在的变异率现象具有较强的描述能力,有广阔的应用前景。
A new mixture generalized autoregressive conditional heteroscedastic(MGARCH) model, which consists of a mixture of k autoregressive components with generalized autoregressive conditional heteroscedasticy, is proposed for modeling nonlinear time series. The stationary conditions of the model are derived. The estimation of the parameters can be easily done through EM algorithm and the order of the model is also easily selected by BIC criterion. The shape-changing feature of conditional distributions makes the new model capable of modeling time series with multimodal conditional distributions and with heteroscedasticity. The model is applied to two real data sets and compared with other competing models, the MGARCH model appears to capture features of the data better than other competing models.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2005年第8期1867-1871,共5页
Journal of System Simulation
基金
国家自然科学基金(60375003)
航空基金(03I53059)
关键词
混合广义自回归条件异方差模型
非线性时间序列
建模和预报
GARCH模型
平稳性
EM算法
BIC准则
mixture generalized autoregressive conditional heteroscedastic model
nonlinear time series
modeling and forecasting
GARCH model
stationarity
EM algorithm
Bayes information criterion