期刊文献+

非线性时间序列建模的混合GARCH方法 被引量:9

Mixture Generalized Autoregressive Conditional Heteroscedastic for Nonlinear Time Series Modeling
下载PDF
导出
摘要 在文献[1]的基础上,首次提出混合广义自回归条件异方差(MixtureGeneralizedAutoregressiveConditionalHeteroscedasticModel简记MGARCH)模型;给出并证明了MGARCH模型的一阶平稳性的充分必要条件及二阶平稳性的充分条件;给出该模型参数估计的EM算法;利用BIC定阶准则对MGARCH模型的各成份进行定阶;计算结果表明该模型对金融非线性时间序列中存在的变异率现象具有较强的描述能力,有广阔的应用前景。 A new mixture generalized autoregressive conditional heteroscedastic(MGARCH) model, which consists of a mixture of k autoregressive components with generalized autoregressive conditional heteroscedasticy, is proposed for modeling nonlinear time series. The stationary conditions of the model are derived. The estimation of the parameters can be easily done through EM algorithm and the order of the model is also easily selected by BIC criterion. The shape-changing feature of conditional distributions makes the new model capable of modeling time series with multimodal conditional distributions and with heteroscedasticity. The model is applied to two real data sets and compared with other competing models, the MGARCH model appears to capture features of the data better than other competing models.
机构地区 西北工业大学
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第8期1867-1871,共5页 Journal of System Simulation
基金 国家自然科学基金(60375003) 航空基金(03I53059)
关键词 混合广义自回归条件异方差模型 非线性时间序列 建模和预报 GARCH模型 平稳性 EM算法 BIC准则 mixture generalized autoregressive conditional heteroscedastic model nonlinear time series modeling and forecasting GARCH model stationarity EM algorithm Bayes information criterion
  • 相关文献

参考文献9

  • 1陆懋祖.高等时间序列经济计量学[M].上海人民出版社,1998..
  • 2Chun Shan Wong and Wai Keung Li, On a Mixture Autoregressive Model [J]. J.R.Statist.Soc.B, 2000, 62(1): 95-115.
  • 3Chun Shan Wong and Wai Keung Li, On a Mixture Autoregressive Conditional Heteroscedastic Model [J]. Journal of the American Statistical Association, 2001, 96: 982-994.
  • 4Benes V E. Existence of Finite Invariant Measures for Markov Processes [C]. Proceedings of the American Mathematical Society, 1967, 18: 1058-1061.
  • 5Goldberg S. Difference Equations [M]. New York: Wiley. 1958.
  • 6Wu, C.F.J, On the Convergence Properties of the EM Algorithm [R]. The Annals of Statistics, 1983, 11: 95-103.
  • 7Box G. E P. Jenkins, G.M. and Reinsel,G.C. Time Series Analysis: Foreca-sting and Control [M]. 3rd edn. Englewood Cliffs: Prentice Hall 1994.
  • 8Tong, H. Non-linear Time Series [M]. New York: Oxford University Press, 1990.
  • 9Nhu.D. LE, R. Douglas Martin, and Adrian E. Raftery, Modeling Flat Stretches, Bursts, and Outliers in Time Series Using Mixture Transition Distribution Models [J]. Journal of the American Statistical Association, 1996, 91: 1504-1515.

共引文献4

同被引文献63

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部