摘要
研究了一个2×2SturmLiouville问题,证明了与它相联系的积分算子为全连续算子,从而得到了2×2SturmLiouville问题特征函数系的完备性以及二元向量按其展开的特征展开定理.
In this paper , the 2 × 2 Sturm -Liouvill's problem is discussed. The integral operator associated withthe 2 × 2 Sturm - Liouvill's problem is proved to be a completely continuous operator. Meanwhile the completeness of eigenvalue functions of this operator and eigenvalue expansion theorem are also obtained.
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2005年第3期256-258,共3页
Journal of Xinyang Normal University(Natural Science Edition)
基金
河南省自然科学基金项目资助(0311010300)
关键词
算子
正交
特征展开
operator
orthogonal
eigenvalue expansion