期刊文献+

超深亚微米LDD nMOSFET中的非幸运电子模型效应

Nonlucky Electron Model Effect in Ultra-Deep Submicro LDD nMOSFETs
下载PDF
导出
摘要 通过对采用0.18μmCMOS工艺制造的两组不同沟道长度和栅氧厚度的LDD器件电应力退化实验发现,短沟薄栅氧LDDnMOSFET(Lg=0.18μm,Tox=3.2nm)在沟道热载流子(CHC)应力下的器件寿命比在漏雪崩热载流子(DAHC)应力下的器件寿命要短,这与通常认为的DAHC应力(最大衬底电流应力)下器件退化最严重的理论不一致.因此,这种热载流子应力导致的器件退化机理不能用幸运电子模型(LEM)的框架理论来解释.认为这种“非幸运电子模型效应”是由于最大碰撞电离区附近具有高能量的沟道热电子,在Si SiO2界面产生界面陷阱(界面态)的区域,由Si SiO2界面的栅和漏的重叠区移至沟道与LDD区的交界处以及更趋于沟道界面的运动引起的. This paper presents the degradation characteristics of two groups of LDD nMOSFETs with different channel length and gate oxide thickness that are fabricated on 0.18μm CMOS technology. It is found that in 0. 18μm nMOSFETs the device lifetime under channel hot-carrier (CHC) stress is lower than that under drain avalanche hot-carrier (DAHC) stress,contrary to the usual thinking that the worst case stress condition depends on the gate voltage with the maximum substrate current. Therefore, the hot-carrier stress-induced device degradation in 0. 18μm nMOSFETs cannot be explained in the framework of the lucky electron model(LEM). Our investigation suggests that such a “non-LEM effect” may be due to the fact that the increased inter-face trap (interface state) generation region at the Si-SiO2 interface by the channel hot electrons with high energy near the maximum impact ionization site moves from the lightly doped drain (LDD) diffusion region to the boundary of the bulk and LDD region beneath the gate oxide. The current path is located closer to the Si-SiO2 interface.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第7期1390-1395,共6页 半导体学报(英文版)
基金 国家自然科学基金(批准号:60376024) 国家高科技研究发展计划(批准号:2003AA1Z1630)资助项目~~
关键词 LDD NMOSFET 热载流子退化 沟道热载流子应力 漏雪崩热载流子应力 幸运电子模型 LDD nMOSFET hot carrier degradation channel hot carrier stress drain avalanche hot carrier stress lucky electron model
  • 相关文献

参考文献13

  • 1Tam S,Ko P K, Hu C. Lucky-electron model of channel hot electron injection in MOSFETs. IEEE Trans Electron Devices,1984,31(6) :1116.
  • 2Hu C,Tam S C, Hsu F C, et al. Hot-electron-induced MOSFET degradation-model, monitor, and improvement. IEEE Trans Electron Devices, 1985,32(2) : 375.
  • 3Chung J, Jeng M C, Moon J, et al. Low-voltage, hot electron currents and degradation in deep-submicrometer MOSFETs.IEEE Trans Electron Devices,1990,37(9):1651.
  • 4Aur S. Low-voltage hot-carrier effects and stress methodology. Proc Int Symp VLSI Technol, 1995: 277.
  • 5Mizuno T, Toriumi A, Iwase M, et al. Hot-carrier effects in 0. 1-μm gate length CMOS devices. IEDM Tech Dig, 1992:695.
  • 6Ellis-Monaghan J J, Hulfachor R B,Kim K W,et al. Ensemble Monte Carlo study of interface-state generation in low voltage scaled silicon MOS devices. IEEE Trans Electron Devices,1996,43(6): 1123.
  • 7Abramo A, Fiegna C, Venturi F. Hot-carrier effects in short MOSFETs at low applied voltages. IEDM Tech Dig, 1995 :301.
  • 8Rauch S E,Guarin F J,LaRosa G. Impact of E-E scattering to the hot-carrier degradation of deep submicron NMOSFETs.IEEE Electron Device Lett,1998,19(12):463.
  • 9Bude J,Iizuka T,Kamakura Y. Determination of threshold energy for hot electron interface state generation. IEDM Tech Dig,1996:865.
  • 10Childs P,Leung C. New mechanism of hot-carrier generation in very short channel MOSFETs. Electron Lett, 1995,31(2):139.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部