期刊文献+

基于信号高阶统计矩分析的信噪比盲评估算法 被引量:1

Signal-to-Noise Rate Blind Estimation Algorithm Based on the High-Order Moment Analysis of Received Signals
下载PDF
导出
摘要 正确地进行信噪比(SNR)评估是CDMA系统进行有效通信的基础,也是某些算法实施的基础,如功率控制、多径搜索与跟踪等。传统的方式中,往往以接收到的信号幅度(信号+噪声)的大小来判断接收信号质量,这在SNR较大的情况下是可行的,但在小信噪比条件下,由于噪声干扰严重,接收信号幅度的大小,不能反映接收信号质量水平。只有接收信号SNR的大小,才能反映接收信号的实际质量。本文提出了一种基于信号高阶统计矩分析的SNR盲评估算法,计算机仿真结果表明,该算法较其他算法有更好的适应性。 It is essential to estimate the Signal-to-Noise Rate correctly for CDMA systems, and for usages of some algorithms used in CDMA systems, such as transmission power-control, path searching and tracking. The receiving signal amplitude (signal + noise) is usually used to measure the receiving signal quality. It is successful at high SNR, but not suitable for low SNR, because it is hard to indicate the receiving signal quality with receiving signal amplitude. It is only SNR that can denote the true level of signals. A new algorithm for blind SNR estimation based in high-order moments is proposed in this paper. The results of computer simulation show that the new algorithm has wider adaptability to SNR conditions.
出处 《信号处理》 CSCD 北大核心 2005年第4期384-388,共5页 Journal of Signal Processing
基金 国防建设资助项目
  • 相关文献

参考文献6

  • 1D.G.Brennan, "Linear diversity combining techniques"Proc. IRE, vol.47, pp. 1075 - 1102, June 1959.
  • 2J.Hagenauer and P.Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications," in proc. IEEE Global Telecommunications Conf., Dallas, TX,. Nov. 1989,pp.1680-1686.
  • 3P.A. Wintz and E. J. Luecke, "Performance of optimum and sub-optimum synchronizers," IEEE Trans. Commun.,vol.COM-17, pp.380-389, June 1969.
  • 4K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi,L. A. Weaver, and C. E. Wheatley, HI, "On the capacity of a cellular CDMA system," IEEE Trans. Veh. Technol.,vol.40, No.2, pp303-312, May 1991.
  • 5A.Swami and B.M.Sadler,"Hierarchical digital modulation classification using cumulants," IEEE Transactions on Communications, vol.48, no,3, March 2000, pp. 416-429.
  • 6W.Webb and L.Hanzo, "Modem Quadrature Amplitude Modulation." Pentech Press, 1994.

同被引文献11

  • 1Bertrand A. Applications and trends in wireless acoustic sensor networks: a signal processing perspective[C]. IEEE Symposium on Communications and Vehicular Technology (SCVT), Ghent, 2011: 1-6.
  • 2W6ifel M, Figen C, Ikbai S, et al.. Multi-source far-distance microphone selection and combination for automatic transcription of leetures[Cl. Tile Ninth International Conference on Spoken Language Processing, Pittsburgh, 2006 361-364.
  • 3Kumatani K, McDonough .J, Lehman J, et al.. Channel selection based on multichannel cross-correlation coefficients for distant speech recognition[C]. Joint Workshop on Hands-free Speech Comnmnication and Microphone Arrays (HSCMA), Edinburgh, 2011: 1-6.
  • 4Himawan I, McCowan I, and Sridharan S. Clustering of Ad-hoc microphone arrays for robust blind beamforming[C]. IEEE International Conference on Acmzstics Speech and Signal Processing (ICASSP), Dallas, 2010:2814 2817.
  • 5Himawan I, McCowan I, and Sridharan S. Clustered blind beamforming from Ad-hoc microphone arrays[J]. IEEE Trasactions on Audio Speech atd Language Pr'ocessmg, 2011, 19(4): 661-676.
  • 6Bertrand A and Moonen M. Efficient sensor subset selection and link failure response for linear MMSE signal estimation in wireless sensor networks[C]. Proceedings of the EUropean Signal Processing COnference (EUSIPCO), Aalborg, 2010: 1092-1096.
  • 7Szurley J, Bertrand A, and Moonen M. Efficient computation of microphone utility in a wireless acoustic sensor network with multichannel Wiener filter based noise reduction[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Kyoto, 2012:2657 2660.
  • 8Bertrand A, Szurley J, Ruckebusch P, et al.. Efficient calculation of sensor utility and sensor removal in wireless sensor networks for adaptive signal estimation and beamforming[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5857-5869.
  • 9Kim T, Attias H T, Lee S Y, et al.. Blind source separationexploiting higher-order frequency dependencies[J]. IEEE Transactions on Audio Speech and Language Processing, 2007, 15(1): 70 79.
  • 10TI-MIT语音数据库[OL].http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html,2011.9.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部