期刊文献+

基于估计概率密度函数的独立分量分析方法 被引量:4

A method of ICA based on estimating the PDF of signals
下载PDF
导出
摘要 基于最优估计函数,给出了一种估计得分函数的方法.通过使用高斯混合模型,给出了估计信号概率密度的EM算法和进行独立分量分析优化的梯度算法.为了提高算法的精度和稳定度,发展了迭代估计概率密度的方法,该方法可以针对超、亚混合信号进行分离. Independent component analysis (ICA) is a method for finding independent components from multivariate (multidimensional) statistical data. Based on the optimal estimation function, a method for the estimation of the score function is developed. By using the Gaussian mixture model , an EM algorithm for approximating the probability density of the data is presented, and a stochastic gradient method is given to separate the independent components. To improve the accuracy and stability of the algorithm, an iterative method for estimating the PDF of data is presented, which can perform the separation of mixed sub-Gaussian from super-Gaussian sources. The performance of the method is shown by computer simulations.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期574-578,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(60072043)
关键词 独立分量分析 梯度下降法 高斯混合模型 串音误差 independent component analysis gradient steepest ascent Gaussian mixture modeling crosstalk error
  • 相关文献

参考文献2

二级参考文献81

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 3[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 4[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 5[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 6[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 8[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 9[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 10[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.

共引文献232

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部