摘要
提出了可扩展的基于异常的入侵检测检测系统的体系结构,系统采用分布式结构及灵活的插件机制,可以方便地扩充检测功能,具有很好的可扩展性。实现了3种基于异常的检测算法,即相等匹配、数据挖掘、神经网络,为检测未知特征模式的攻击提供了较为有效的手段。
A novel framework, extensible anomaly-based detection systems (EAIDS) is described, for implementing several techniques for intrusion detection based on anomaly detection. The architecture of EAIDS is extensible because EAIDS utilizes a flexible modular plug-in architecture. Three anomaly detection algorithms, i.e., equality matching, data mining and artificial neural networks are introduced, which provides efficient methods for detecting unknown intrusion.
出处
《计算机工程与设计》
CSCD
北大核心
2005年第7期1722-1725,共4页
Computer Engineering and Design
基金
天津市自然科学基金项目(013800211)。
关键词
入侵检测系统
异常检测
相等匹配
数据挖掘
神经网络
IDS
anomaly-based detection
equality matching
data mining
artificial neural networks