期刊文献+

基于TDT技术的Web主题搜索分析与设计

Analysis and Design of Web Topic Search Based on TDT Technology
下载PDF
导出
摘要 提出了一种结合最新TDT技术、基于增强学习的优先Web环境主题搜索策略,并以此设计主题搜索器系统。该系统通过引入基于领域知识的TDT文本分类技术,大大改进了基于关键字的Naive Bayes模型主题相似性判别的准确性;通过引入基于增强学习的页面评估函数特征化主题Web环境,有效地提高了稀有信息的搜索能力。试验结果表明,该系统具有较高的实用性。 By combining TDT and on - line reinforcement leaming,this paper puts forward a new Web topic search strategy based on Web environment precedence. The strategy results in an intelligent crawler. The accuracy of obtained documents is improved by TDT technique,which is based on domain knowledge. Using a function, based on reinforcement learning, to value Web pages and then to feature Web topic environment, this method works well in promoting the search efficiency on rare information in effect. The experiments show that this system is more effective.
出处 《微机发展》 2005年第8期145-147,共3页 Microcomputer Development
基金 河北省自然科学基金资助项目(F2004000132)
关键词 智能搜索器 TDT WEB环境 增强学习 领域知识 intelligent erawler TDT Web environment reinforcement learning domain knowledge
  • 相关文献

参考文献8

  • 1朱靖波,姚天顺.基于FIFA算法的文本分类[J].中文信息学报,2002,16(3):20-26. 被引量:14
  • 2Lorincz A, Kokai I,Meretei A. Intelligent High- Performance Crawlers Used To Reveal Topic- Specific Structure Of The WWW[J]. Foundations of Computer Science, 2002, 13(4):477 - 495.
  • 3Diligenti M, Coetzee F, Lawrence S, et al. Focused Crawling Using Context Graphs[A]. Proceedings of the 26th International Conference on Very Large Databases[C]. San Francisco,CA:Morgan Kaufmann Publishera Inc,2000. 527-534.
  • 4Mukherjea S. WTMS: a system for collecting and analyzing topic- specific Web information[J]. Computer Networks,2000,33:48-60.
  • 5Brin S, Page L. The anatomy of a large - scale hypertextual Web-search engine[A]. Proc 7th International World Wide Web Conference[C]. Brisbane:SIGIR, 1998.146 - 164.
  • 6朱靖波 姚天顺.面向TDT的主题相似性计算模型[A]..语言计算与基于内容的文本处理[C].北京:清华大学出版社,2004.476-481.
  • 7Sutton R S, Barto A G. Reinforcement Learning:An Introduction[M]. Cambridge, MA: MIT Press, 1998.
  • 8Dietterich T G. Hierarchical reinforcement learning with the max q value function decomposition[J]. Journal of Artificial Intelligence Research, 2000,13: 227 - 303.

二级参考文献1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部