期刊文献+

关联规则挖掘算法的改进 被引量:3

An Improved Data Mining Algorithm of Association Rule
下载PDF
导出
摘要 为了提供一种更加准确高效的关联规则算法,在传统的Apriori算法的基础上引入分而治之的理念和加权的思想。先把数据库分成互不相交的块,根据需求分析从每一个块中产生用户感兴趣的子集,把所有的子集合并成挖掘对象,再利用普通的关联规则算法产生频繁项集,最后在该项集的基础上产生加权频繁项集。该算法基本上克服了传统Apriori算法的缺点,从而大大地提高了运算效率,最大限度解决了“项集生成瓶颈”问题,并且使得生成的关联规则更加科学、准确。 The aim is to provide a kind of the association rule that is more accurate and more effective. This algorithm builds based on the traditional Apriori algorithm. Firstly, the algorithm divides DB into mutually disjoint blocks, produces sub- set that users ore interested with accoding to requirement analysis from blocks, combines all the sub- set into dig object. Secondly, this algorithm produces frequent items using previous common association rules mining algorithm,then prnduces weighted itema from the previous items. The algorithm basically overcomes the shortcoming of the traditional Apriori algorithm, thus, can greatly improve operational efficiency,solve“the bottleneck of producing item- set”problem with superior limit, and make the association rule more scientific, more accuratc.
出处 《微机发展》 2005年第8期151-152,共2页 Microcomputer Development
关键词 数据挖掘 关联规则 APRIORI算法 data mining association rule Apriori algorithm
  • 相关文献

参考文献3

二级参考文献13

  • 1R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules [C].In:Proceedings of 1994 International Conference of Very Large Databases, Santiago, Chile, 199.4: 487 ~499
  • 2C H Cai,Ada W C Fu,C H Cheng et al.Mining association rules with weighted items[C].In:Procecdings of the International Database Engineering and Applications Symposium,1998:68~77
  • 3J Han,J Pei,Yiwei Yun. Mining Frequent Patterns without Candidate Generation[C].In:Proceeding of the ACM SIGMOD Int Conf on Management of Data,2000:1~12
  • 4D W Cheung,S D Lee,B Kao. General Incremental Technique for Maintaining Discovered Association Rules[C].In:Proceeding of Databases Systems for Advanced Application,DASFAA97, Melbourne,Australia,1997:185~194
  • 5Chan M K, Ada F, Man H W. Mining Fuzzy Association Rules in Database. In:Proc. of the ACM Sixth International Conf. on Information and Knowledge Management, Las Vegas, Neveda, 1997:10-14
  • 6Hathaway R J, Davenport J W, Bezdek J C. Relational Dual of the Cmeans Algorithms. Pattern Recognition, 1989,22(2): 205-212
  • 7陆丽娜,陈亚萍,魏恒义,杨麦顺.挖掘关联规则中Apriori算法的研究[J].小型微型计算机系统,2000,21(9):940-943. 被引量:144
  • 8周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 9路松峰,胡和平.加权关联规则的开采[J].小型微型计算机系统,2001,22(3):347-350. 被引量:27
  • 10陆建江,宋自林,钱祖平.挖掘语言值关联规则[J].软件学报,2001,12(4):607-611. 被引量:49

共引文献25

同被引文献19

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部