期刊文献+

基于累积绝对差图像与交叉熵分割的运动目标检测与定位 被引量:3

Motion Target Detection and Orientation Based on Accumulative Absolute Difference Picture and Cross Entropy
下载PDF
导出
摘要 提出了一种新的运动目标检测与定位方法。针对位移变化较小的运动目标,先对运动序列中所有相邻两帧图像作绝对值差分运算,然后再将绝对值差分结果进行累加,从而得到累积绝对差图像。利用交叉熵分割法对累积绝对差图像二值化,并结合形态学方法去除噪声,求取出目标的运动区域。对运动序列的首帧和尾帧进行差分运算并二值化,为了去噪,将首尾帧差图像与累积绝对差图像进行逻辑与运算,确定出目标在首尾图像中的位置。实验结果表明了本方法的有效性和鲁棒性。 A new motion target detection and orientation method is proposed, This paper accumulates absolute difference between sequential two frames in motion sequences and gets accumulative absolute difference picture(AADP),changes AADP into binary image by cross entropy and denoises it by morphology method,makes difference operator between first frame and last frame and binarizes it,at last,makes logic and operator between this difference image and AADP and gets target position in first image and last image. The results of experiments show that this method is robust and effective.
作者 朱颖 江泽涛
出处 《计算机与现代化》 2005年第8期75-77,共3页 Computer and Modernization
关键词 累积绝对差图像 交叉熵 形态学方法 运动区域 accumulative absolute difference picture cross entropy morphology method motion region
  • 相关文献

参考文献7

  • 1王栓,艾海舟,何克忠.基于差分图象的多运动目标的检测与跟踪[J].中国图象图形学报(A辑),1999,4(6):470-475. 被引量:90
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 4Johannsen G, Bille J. A threshold selection method using information measures[A]. Proceedings of 61CPR[ C]. 1982. 140-142.
  • 5Kapur J N, Sahoo P K, Wong A K C. A new method for gray level picture thresholding using the entroy of histogram [ J ].CVGIP, 1985(29) :273-285.
  • 6Abutaleb A S. Automatic thresholding of gray level pictures using two-dimensional entroy[J]. CVGIP, 1989(47) :23-32.
  • 7Kullback S. Information Theory and Statisfcs[M].New York:John Wiley, 1959.

二级参考文献1

共引文献998

同被引文献26

  • 1邵小良,钟先信,李晓毅,陈帅.远程无线监控系统及其图像文件传输的实现[J].微型机与应用,2004,23(7):52-54. 被引量:6
  • 2方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 3刘征宇,周孝宽.统计运动检测中的自动差值图像分析[J].激光与红外,2005,35(12):983-986. 被引量:1
  • 4Haritaoglu I, Harwood D, Davis L S. W4: Real-Time Surveillance of People and Their Activities [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 809 - 830.
  • 5Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [ C]. Proceeding of International Conference on Computer Vision. Corfu, Greece,1999:255 - 261.
  • 6Ali A T, Dagless E L. Alternative practical methods for moving object detection [ C ]. International Conference on Image Processing and its Applications. Maastricht, 1992:77 - 80.
  • 7Barron J, Fleet D, Beauchemin S. Performance of optical flow techniques [ J ]. International Journal of Computer Vision, 1994,12 ( 1 ) :42 - 77.
  • 8Wren C, Jani A Azarhaye, Darrell T, Pentland A P. P finder. Real-time tracking of the human body [J]. IEEE Trans. on Patfern Ana 1, and Machine Infel 1, 1997 : 780 - 785.
  • 9Koller D, Weber J, Huang T, et al. Towards Robust Autonatic Traffic Scene Analysis in Real-time [ C ]. Proc. ICPR94, 1994, 11:126-131.
  • 10Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ J ]. Proc IEEE CVPR 1999, 6:246-252.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部