期刊文献+

芸薹属A,B和C基因组之间关系研究进展 被引量:12

Development of Relationship Between A, B and C Genomes in Brassica genera
下载PDF
导出
摘要 芸薹属A,B和C基因组之间的亲缘关系近年来取得了很大进展,大量细胞遗传学和分子生物学的研究结果表明:A和C基因组之间的亲缘关系较A和B基因组以及B和C基因组之间更为接近。A,B和C基因组之间的比较基因组结果表明:这3个基因组是由更加原始物种进化而来的。在芸薹属基因组演化过程中发生了大量的染色体变异,如重复、缺失、重排等,从而造成了现在不同基因组之间的差别。最后,对芸薹属不同基因组和拟南芥基因组之间的亲缘关系进行了综述。 The study on genetic relationship among A, B and C genomes in Brassica genera has gained prodigious development, which revealed that the relationship between A and C genome was more closer than that of A and B, B and C genome. The results of comparative genomics showed that A, B and C genomes were all originated from a common ancestral genome. A lot of chromosome variations were taken place in the evolution of Brassica genomes,such as duplication, deletion and rearrangement, resulting in the difference of genomes. At last, the genetic relationship between Brassica genera and Arabidopsis thaliana was summarized.
出处 《遗传》 CAS CSCD 北大核心 2005年第4期671-676,共6页 Hereditas(Beijing)
基金 国家自然科学基金 华中科技大学人才引进基金 华中农业大学作物遗传改良国家重点实验室开放基金资助~~
关键词 芸薹属 基因组 拟南芥 Brassica genera ~ genome ~ Arabidopsis tl^liana
  • 相关文献

参考文献52

  • 1李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究[J].中国油料作物学报,2002,24(1):10-14. 被引量:30
  • 2U N. Genom-analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japan J Bot, 1935, 7:389~452.
  • 3Robbelen G. Beitrage zur analysis des Brassica genomes.Chromosoma, 1960, 11: 205~228
  • 4Armstrong K C, Keller W A. Chromosome pairing in haploids of Brassica campestris. Theor Appl Genet, 1981, 59 : 49~52.
  • 5Armstrong K C, Keller W A. Chromosome pairing in haploids of Brassica oleracea. Can J Genet Cytol, 1982, 24:735~739.
  • 6Song K M, Osborn T C, Willaims, P H. Brassica taxonomy based on nuclear restriction fragment length polymorisms (RFLPs) I. Genome evolution of diploid and amphidiploid species. Theor Appl Genet, 1988, 75: 651~656.
  • 7Attia T, Robbelen G. Cytogenetic relationship within cultivated Brassica analyzed in amphidiploid from the three diploid ancestors. Can J Genet Cytol, 1986, 28:323~329.
  • 8Chèvre A M, Eber F, Barret P, Brace J. Identification of the different Brassica nigra chromosomes from both sets of B. oleracea-B. nigra and B. napus-B. nigra addition lines with special emphasis on chromosome transmission and self-incompatibility.TheorApplGenet, 1997, 94: 603~611.
  • 9Kaneko Y, Nagasawa N, Bang S W, Matsuzawa Y. Homoeological relationships between the f chromosome of Brassica rapa and the e chromosome of Brassica oleracea. Plant Breeding,2002, 121:171~173.
  • 10Meng J, Shi S, Gan L, Li Z, Qun X. The production of yellowseeded Brassica napus (AACC) through crossing interspecific hybrids of B. campesrtis (AA) and B . carinata (BBCC) with B. napus. Euphytica, 1998, 103:329~333.

二级参考文献18

  • 1[1]Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassica family[J]. Plant Physiologelogy Biochemical, 2001,39:253-262.
  • 2[2]Lagercrantz U, Lydiate D J. Comparative genome mapping in Brassica[J]. Genetics, 1996,144:1903-1910.
  • 3[3]Song K M, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution[J]. Proc Natl Acad Sci USA, 1995,92:7719-7723.
  • 4[4]Warwick S L, Black L D. Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)-Chloroplast genome and cytodeme dongruence[J]. Theor Appl Genet, 1991,82:81-92.
  • 5[5]Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragmenth length polymorphisms (RFLPs) 1. Genome evolution of diploid and amphidiploid species[J]. Theor Appl Genet, 1988,75:784-794.
  • 6[6]Maluszynska J, Heslop-Harrison J S. Physical mapping of rDNA loci in Brassica species[J]. Genome, 1993,36:774-781.
  • 7[7]Gill B S, Friebe B. Plant cytogenetics at the dawn of the 21st century[M]. Current Opinion in Plant Biology, 1998.109-115.
  • 8[8]Kenton A, Parokonny A S, Gleba X Y. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics[J]. Mol Gen Genet, 1993,240:159-169.
  • 9[9]Mukai Y, Gill B S. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and repeated DNA probes[J]. Genome, 1993,36:489-494.
  • 10[10]Li C B, Zhang D M, Ge S, et al. Identification of genome constitution of Oryza mulampuzhaensis, O.minuta. and O.punctata by multicolor genomic in situ hybridization[J]. Theor Appl Genet, 2001,103:204-211.

共引文献34

同被引文献137

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部