期刊文献+

EAOR投影迭代算法求解一类对称双正型线性互补问题 被引量:3

EAOR Projective Iterative Algorithm for Solving Symmetric and Copositive Linear Complementarity Problems
下载PDF
导出
摘要 研究求解一类对称双正型的线性互补问题的EAOR迭代算法.证明了由此算法产生的迭代序列的聚点是线性互补问题的解.并且,当互补问题中的矩阵为对称双正加阵或严格对称双正阵时,算法产生的迭代序列存在子序列收敛到互补问题的解.而当矩阵为非退化对称双正加阵时,该序列收敛. The EAOR algorithm for solving symmetric and copositive linear complementarity problems was studied. It is shown that any accumulation point of the iteration generated by the algorithm solves the linear complementarity problem. When the matrix A involed in the linear complementarity problem is a symmetric and copositive plus matrix or a symmtric and strictly copositive matrix, the sequence generated by the algorithm exists an accumulation, which solves the linear complementarity problem. Moreover, when A is a nondegenerate,symmetric and copositive plus matrix, the sequence converges to a solution of the problem.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期117-120,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10371035)
关键词 对称双正阵 对称双正加阵 互补问题 EAOR投影迭代算法 symmetric and copositive matrix symmetric and copositive plus matrix complementarity problem
  • 相关文献

参考文献7

  • 1MANGASARIAN O L. Solution of symmetric linear complementarity problems by iterative methods[J]. Journal of Optimization Theory and Applications, 1977, 22(4): 465-485.
  • 2WANG X M, EVANS D J. Convergence of the extrapolated and iterative methods [ J ]. International Journal of Computer Mathematics, 1993, 52: 65-74.
  • 3WANG X M. Generalized Stein - Rosenberg theorems for the regular splittings and convergence of some generalized iterative methods[J]. Linear Algebra and Its Applications, 1993, 183:207 - 235.
  • 4曾金平,李董辉.对称双正型线性互补问题的多重网格迭代解收敛性理论[J].计算数学,1994,16(1):25-30. 被引量:6
  • 5MANGASARIAN O L, DE LEONE R. Parallel gradient projection successive overrelaxation for symmetric linear complementarity problems and linear programs [ J ]. Annals of Operations Research, 1988, 14: 41-59.
  • 6OSTROWSKI A M. Solution of equations and systems of equations[M]. New York: Academic Press, 1966.
  • 7MURTY K G. On the number of solutions to the complementarity problem and spanning properties of complementary cones[J ].Linear Algebra and Its Applications, 1972, 5: 65 - 108.

二级参考文献4

  • 1曾金平,J Comput Math,1993年,11卷,1期,73页
  • 2王荩贤,计算数学,1988年,10卷,2期,163页
  • 3王荩贤,J Comput Math,1986年,4卷,2期,154页
  • 4张宝康,应用数学与计算数学学报,1982年,1卷,2期,31页

共引文献5

同被引文献1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部