期刊文献+

两种智能卡芯片的ECDSA实现

Implementation of ECDSA on Two Smart Cards
下载PDF
导出
摘要 探讨了有限域GF(2n)上椭圆曲线密码算法基本理论、快速实现和ECDSA算法(椭圆曲线数字签名算法)实现的相关理论;然后采用INFINEON公司的携带域上求模运算的加速协处理模块(DDES-EC2)的智能卡芯片SLE66CL160S和SLE66CX320P,实现了基于有限域GF(2n)上密钥长度为163bits的椭圆曲线数字签名算法,并对这两种实现进行了对比分析;最后对实现进行测试,证明是成功高效的。 Elliptic curve cryptosystems theory and the fast implementation of element algorithms overGF(2^n) and algorithms of ECDSA are discussed, then based on the SLE66CLI60S and SLE66CX320P smart cards with embedded the DDES-EC2 module, the 163bit length ECDSA logarithm over GF(2^n) is implemented, and the two kinds of implementation are implemented. At last through testing, the result shows that this implementation is efficient and correct.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第15期16-18,共3页 Computer Engineering
关键词 椭圆曲线密码体制 ECDSA 智能卡 Elliptic curve cryptosystems ECDSA Smart card
  • 相关文献

参考文献7

  • 1卢开澄.计算机密码学[M].北京:清华大学出版社,1998..
  • 2唐柳英,李宝.椭圆曲线密码体制实现的若干问题浅谈[J].中国科学院研究生院学报,2001,18(2):186-192. 被引量:6
  • 3Koblitz N.Elliptic Curve Cryptosystems [J].Mathematics of Compu-tation,1987,48(177):203-209
  • 4Schoof R.Elliptic Curve over Finite Field and the Computation of Square Roots Mod P.Mathematics of Computation,1985,44 (170):483-483
  • 5IEEE Std.1363-2000.IEEE Standard Specifications for Public-key Cryptography[S].2000
  • 6SEC 1.Elliptic Curve Cryptography.Standards for Efficient Cryptography Croup,Working Draft,EB/OLJ,http://www.secg.org/1999-02-12,1999
  • 7Infineon Technologies.Security & Chip Card ICs SLE66CxxxP[M].Germany:Infineon Technologies AG ,1999:160-190

二级参考文献6

  • 1[1]Alfred Menezes. Elliptic Curve Pulblic Key Cryptosystems. Kluwer Academic Publishers, 1993
  • 2[2]The Elliptic Curve Cryptosystem for Smart Cards: The Seventh in a Series of ECC White Papers. Avilable at: http://www. certicom. com
  • 3[3]Certicom. Remarks on the Security of the Elliptic Curve Cryptosystem. 1997. avilable at:http://www. certicom. com
  • 4[4]Jorge Guajardo, Christof Paar. Efficient Algorithms for Elliptic Curve Cryptosystems. In: Advances in Cryptology'97.1997. 343~ 355
  • 5[5]Erik De Win et al. A Fast Software Implementation for Arithmetic Operations in GF (2-n). In: Advances in Cryptology-Proceedings of Asias rypt'95. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1996,1163: 65 ~ 76
  • 6[6]Jerome AmSolinas. An Improved Algorithm for Arithmetic on a Family of Elliptic Curves. In: Advances In Advances in Cryptology'97.1997.356 ~ 371

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部