期刊文献+

散乱点云的三角网格重构 被引量:7

A Triangular Mesh Reconstruction Algorithm for Points Cloud
下载PDF
导出
摘要 基于增量扩散法的思想,提出并实现了一个散乱点云的三角网格重构算法,算法首先利用体素网格的散列表对散乱点进行组织,然后在确定了初始种子三角形的基础上,基于活动边扩展规则构造新的三角形,使网格不断向周围扩展直到活动边表空为止,最后算法合并棱边并计算每个三角形的顶点法矢,最终构造出散乱点云的三角网格。 Based on region-growing idea, a triangular mesh reconstruction algorithm for points cloud is presented. The algorithm first organizes the point cloud into hash table of voxels in voxel grid. Then after determined the seed triangles and the origin active edges, the algorithm searches a new point to form a new triangle with a active edge until the active edge list is empty and the triangular mesh grows. At last the algorithm merges the edges, calculates the nomal of each vertex for each triangle and the triangular mesh is reconstructed.
作者 董洪伟
出处 《计算机工程》 CAS CSCD 北大核心 2005年第15期30-32,共3页 Computer Engineering
关键词 散乱点云 三角网格 网格重构 Point clouds Triangular mesh Mesh reconstruction
  • 相关文献

参考文献13

  • 1Hoope H,DeRose,Duchamp T,et al.Surface Reconstruction from Unorganized Points.In:Proceeding of SIGGRA-PH'92.Danvers:Assison-Wssley Publishing Company:1992:71-78
  • 2Hoppe H,DeRose T,Duchamp T,et al.Mesh Optimization.In:Proceeding of SIGGRAPH'92.Danvers:Assison-Wssley Publishing Company,1993:19-26
  • 3Bolle R M,Vemuri B C.On Three-dimensional Surface Reconstruc-tion Methods.IEEE Trans.Pat.Anal.Mach.Intell.,1991,13(1):1-13
  • 4Brinkley J F.Knowledge-driven Ultrasonic Three-Dimensional Organ Modeling.IEEE Trans.Pat.Anal.Mach.Intell.,1985,7(4):431-441
  • 5Schmitt F,Barsky B A,Du W.An Adaptive Subdivision Method for Surface Fitting from Sampled Data.Computer Graphics (SIGGRAPH'86 Proceedings),1986,20(4):179-188
  • 6Sclaroff S,Pentland A.Generalized Implicit Functions for Computer Graphics.Computer Graphics (SIGGRAPH'91 Proceedings),1991,25(4):247-250
  • 7Barnhill R E,Opitz K,Pottman H.Fat Surface:A Trivariate Approach to Triangle-Based Interpolation on Surfaces.CAGD,1992,9(5):365-378
  • 8Nielson G M,Foley T A,Hamann B,et al.Visualizing and Modeling Scattered Multivariate Data.IEEE CG & A,1991,11(3):47-55
  • 9Bowyer A.Computing Dirichlet Tessellations.The Computer Journal,1981,24(2):162-166
  • 10Watson D F.Computing the N-dimensional Delaunay Tessellation with Application to Voronoi Polytopes.The Computer Journal,1981,24(2):167-172

同被引文献53

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部