期刊文献+

两种橡胶/有机累托石纳米复合材料的结构与性能 被引量:2

Structure and Properties of two kinds of Organic-Rectorite/Rubber Nanocomposites
下载PDF
导出
摘要 比较了用熔体法制备的有机累托石(OR)/丁苯橡胶(SBR)以及有机累托石(OR)/天然橡胶(NR)2种纳米复合材料的结构与性能。TEM和XRD对材料的分析显示,由于橡胶基体的性质差异,OR/SBR为典型的插层型结构,而OR/NR为插层型和部分剥离型混合结构。应力应变行为的研究表明,随着OR用量的增加,OR/SBR的拉伸强度和拉断伸长率均增大,这主要是分子链滑移和填料的取向造成的。对于拉伸结晶型橡胶NR,由于部分剥离型填料的增强作用,NR的定伸应力随填料用量的增加而逐渐提高。由于对结晶的阻碍作用,当OR用量为20份时,OR/NR的拉伸强度有所降低。纳米累托石的加入可以显著提高SBR和NR的硬度和撕裂强度。热失重分析表明,OR/橡胶纳米复合材料与相应的纯橡胶相比,热稳定性提高,在NR体系中更为显著。 Two rubber-based nanocomposites, natural rubber (NR) and styrene-butadiene rubber (SBR) matrixes, were prepared with organic rectorite(OR) by melt blending. X-ray diffraction(XRD) revealed that the OR/SBR nanocomposites exhibited a well-ordered intercalated structure; in the case of the NR/OR nanocomposite, it exhibited an intermediate intercalated and partial exfoliated structure. These results were in well agreement with transmission electron microscopy (TEM) observations. The tensile strength and the elongation at break of OR/SBR increased with the OR mass fraction increasing. For the strain-induced crystallization NR, the partial exfoliated OR efficiently improved the modulus of NR/OR nanocomposite, and however, its hindrance on NR crystallization during the tensile process might be the main reason for the decrease in tensile strength of OR/NR loading 20phr. The introduction of OR into SBR and NR enhanced their hardness and tear strength. TG analysis displayed the thermal stability of OR/SBR and OR/NR nanocomposites were enhanced in comparison with that of the corresponding pure rubber, especially in the NR matrix.
出处 《特种橡胶制品》 2005年第4期1-5,共5页 Special Purpose Rubber Products
基金 国家自然科学基金(05173003) 北京市科技新星计划(H010410010112) 北京市自然科学基金项目(2031001) 十五攻关项目(2001BA310A12)
关键词 累托石 橡胶 纳米复合材料 熔体法 应力应变 热稳定性 rectorite rubber nanocomposites melting intercalation stress-strain behaviors thermal stability
  • 相关文献

参考文献4

二级参考文献19

  • 1赵瑞香,王大红,牛生洋,苏娟.超声波细胞破碎法检测嗜酸乳杆菌β-半乳糖苷酶活力的研究[J].食品科学,2006,27(1):47-50. 被引量:28
  • 2许牡丹,杨伟东,柯蕾,檀志芬,崔丽娜.米曲霉β-半乳糖苷酶催化合成低聚半乳糖的工艺研究[J].食品工业科技,2006,27(1):183-185. 被引量:10
  • 3Zhang Liqun, Wang Yizhong, Wang Yiqing, et al. Morphology and mechanical properties of day/styrene- butadiene rubber nanocomposites[J]. J A P S, 2000, 78( 11 ): 1173 - 1878.
  • 4Wu Youping, Zhang Liqun, Wang Yiqing, et al. Structure of carboxylated acrylonitrile- butadiene rubber(CNBR) -clay nanocompasites by co- coagulating rubber latex and clay aqueous suspension[J]. J A P S, 2001, 82( 11 ) : 2842 - 2848.
  • 5Shenoy A V. Rheology of filled polymer systems[M]. New York:Kluwer Academic Pub, 1999.8 - 25.
  • 6Aranguren A A, Amora E, DeGroot Jr J V, et al. Effect of reinforcing fillers on the rheology of polymer melts[J]. Journal of Rheology, 1992, 36(6): 165 - 170.
  • 7Krishnamoorti R, Giannelis E P. Rheology of end-tethered polymer layered silicate nanocomposites[J] .Macromolecules,1997, 30(14): 4097 - 4102.
  • 8Ren J X, Silva A S, Krishnamoorti R. Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered - silicate nanocomposites[J]. Macromolecules, 2000, 33(10): 3739 -3746.
  • 9Somomon M J, Almusallam A S, Seefeldt K F, et al. Rheology of polyprorylene/clay hybrid materials[J] . Macromolecules, 2001,34(6): 1864 - 1872.
  • 10Lan T,Chem Mater,1995年,7卷,11期,2144页

共引文献201

同被引文献20

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部