期刊文献+

保Taylor联合谱的线性映射(英文)

The Linear Maps Preserving the Taylor Joint Spectrum
下载PDF
导出
摘要 设L(H),Lncom(H)分别是HilbertH上有界算子及n个两两交换的算子组的集合.设T∈Lncom(H),sp(T)表示Taylor联合谱,φi(i=1,2,…,n)是L(H)上满的线性映射且满足φi(Tl)φj(Tk)=φj(Tk)φi(Tl)当且仅当TlTk=TkTl,i,j=1,2,…,n.设T=(T1,T2,…,Tn)∈Lncom(H),φ=(φ1,φ2,…,φn),φ(T)=(φ1(T1),φ2(T2),…,φn(Tn)).文章证明了如果dimH<∞,对任意T=(T1,T2,…Tn)∈Lncom(H),sp(φ(T))=sp(T),则φi=φj,i,j=1,2,…,n.如果dimH=∞,T=(T1,T2,…Tn)∈Lncom(H),sp(φ(T))=sp(T),则φ是自同构或反自同构. Let L(H), Lcom^n(H) be the set of bounded linear operators and n-tuples of commuting operators on Hilbert space H. For T∈Lcom^n(H), let sp (T) denote the Taylor joint spectrum, and φi(i = 1, 2, …, n) be the surjective linear map on L(H) and satisfy φi(Tl)φj(Tk)=φj(Tl)if and only if TlTk=TlTk,i,j=1,2,…,n.Let T=(T1,T2,…,Tn)∈Lcom^n(H),φ=(φ1,φ2.…,φn).φ(T)=(φ1(T)=φ2(T2),…,φn(Tn)).In this paper.we prove that if dimH〈∞,sp(φ(T))=sp(T)for all T∈Lcom^n(H),Then φi,For dimH=∞,if φi=φj,(i=1,2,…,n),sp(φ(T))=sp(T)for all T∈Lcom^n(H),we prove that φ is either an isomorphism or an anti-isomorphism.
作者 翟发辉
出处 《应用泛函分析学报》 CSCD 2005年第2期130-136,共7页 Acta Analysis Functionalis Applicata
  • 相关文献

参考文献12

  • 1Chi-Kwong Li, Nam-kiu Tsing. Linear preserver problems: a brief introduction and some special techniques[J]. Linear Algebra Appl, 1994, 201: 21-42.
  • 2Marcus M, Moyls W. Linear transformation on algebras of matrices[J]. Canad J Math, 1959, 11: 61-66.
  • 3Choi M D, Hadwin D, Nordoren E, Radiavi H, Rosenthal P. On positive linear maps preserving invertibility[J]. J Funct Anal, 1984, 59: 462-469.
  • 4Jafarian A A, Sourour A R. Spectrum-preserving linear maps[J]. J Funct Anal, 1986, 66: 255-261.
  • 5Watkins W. Linear maps that preserve commuting pair of matrices[J]. Linear Algebra Appl, 1976, 14:29-35.
  • 6Choi M D, Jafarian A A, Radjavi H. Linear maps preserving commutativity[J]. Linear Algebra Appl,1987, 87: 227-241.
  • 7Omladic M. On operators preserving commutativity[J]. J Funct Anal, 1986, 66: 105-122.
  • 8Marcoux L W, Sourour A R. Commutativity preserving linear maps and Lie auto-morphisms of triangular matrix algebras[J]. Linear Algebra Appl, 1999, 288: 89-104.
  • 9Taylor J L. A joint spectrum for several commuting operators[J]. J Funct Anal, 1970, 6: 172-191.
  • 10Curto R E. Fredholm and invertible n-tuples of operators, the deformation problem[J]. Trans Amer Math Soc, 1981, 266: 129-159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部