摘要
设L(H),Lncom(H)分别是HilbertH上有界算子及n个两两交换的算子组的集合.设T∈Lncom(H),sp(T)表示Taylor联合谱,φi(i=1,2,…,n)是L(H)上满的线性映射且满足φi(Tl)φj(Tk)=φj(Tk)φi(Tl)当且仅当TlTk=TkTl,i,j=1,2,…,n.设T=(T1,T2,…,Tn)∈Lncom(H),φ=(φ1,φ2,…,φn),φ(T)=(φ1(T1),φ2(T2),…,φn(Tn)).文章证明了如果dimH<∞,对任意T=(T1,T2,…Tn)∈Lncom(H),sp(φ(T))=sp(T),则φi=φj,i,j=1,2,…,n.如果dimH=∞,T=(T1,T2,…Tn)∈Lncom(H),sp(φ(T))=sp(T),则φ是自同构或反自同构.
Let L(H), Lcom^n(H) be the set of bounded linear operators and n-tuples of commuting operators on Hilbert space H. For T∈Lcom^n(H), let sp (T) denote the Taylor joint spectrum, and φi(i = 1, 2, …, n) be the surjective linear map on L(H) and satisfy φi(Tl)φj(Tk)=φj(Tl)if and only if TlTk=TlTk,i,j=1,2,…,n.Let T=(T1,T2,…,Tn)∈Lcom^n(H),φ=(φ1,φ2.…,φn).φ(T)=(φ1(T)=φ2(T2),…,φn(Tn)).In this paper.we prove that if dimH〈∞,sp(φ(T))=sp(T)for all T∈Lcom^n(H),Then φi,For dimH=∞,if φi=φj,(i=1,2,…,n),sp(φ(T))=sp(T)for all T∈Lcom^n(H),we prove that φ is either an isomorphism or an anti-isomorphism.
出处
《应用泛函分析学报》
CSCD
2005年第2期130-136,共7页
Acta Analysis Functionalis Applicata