期刊文献+

具Neumann边界条件的拟线性椭圆方程组的多解存在性(英文) 被引量:2

Multiplicity Result for Quasilinear Elliptic Systems with Neumann Boundary Condition
下载PDF
导出
摘要 通过运用Ricceri的一个三临界点定理,得到了一类具变分结构的拟线性椭圆方程组的多解的存在性. A multiplicity result is obtained for a quasilinear elliptic systems with variational structure via Ricceri's three critical points theorem.
出处 《应用泛函分析学报》 CSCD 2005年第2期146-150,共5页 Acta Analysis Functionalis Applicata
基金 SupportedbyNaturalScienceFoundationofZhejiangProvince(103098)
关键词 多解 拟线性椭圆方程组 NEUMANN边界条件 存在性 multiple solutions quasilinear elliptic systems Neumann boundary condition
  • 相关文献

参考文献11

  • 1Bensedik A, Bouchekif M. On certain nonlinear elliptic systems with indefinite terms[J]. Electron J Dif Eq, 2002, 83: 1-16.
  • 2de Figueiredo D G, Ding Y H. Strongly indefinite functionals and multiple solutions of elliptic systems[J]. Trans Amer Math Soc, 2003, 355(7): 2973-2989.
  • 3Bozhkov Y, Mitidieri E. Existence and multiple solutions for quasilinear systems via fibering method[J].J Dif Eq, 2003, 190: 239-267.
  • 4Boccardo L, de Figueiredo D G. Some remarks on a system of quasilinear elliptic equations [J].Nonlinear Differ Edu Appl, 2002, 9: 309-323.
  • 5Ricceri B. Existence of three solutions for a class of elliptic eigenvalue problems [J]. Math Comput Modelling, 2000, 32: 1485-1494.
  • 6Ricceri B. On a three critical points theorems[J]. Arch Math (Basel), 2000, 75: 220-226.
  • 7Anello G, Cordaro G. An existence theorem for the Neumann problem involving the p-Laplacian[J]. J Convex Analysis, 2003, 10: 185-198.
  • 8Bonanno G, Candito P. Three solutions to a Neumann problem for elliptic equations involving the pLaplacian[J]. Arch Math (Basel), 2003, 80: 424-429.
  • 9Bonanno G, Liverea R. Multiplicity theorems for the Dirichlet problem involving the p-Laplacian[J].Nonlinear Anal, 2003, 54: 1-7.
  • 10Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems [M]. Springer-Verlag, New York, 1989.

同被引文献11

  • 1FAN Xian-ling, ZHANG Qi-hu. Existence of Solutions for p(x)-Laplacian Dirichlet Problem [J]. Nonlinear Anal, 2003, 52(8): 1843-1852.
  • 2FAN Xian-ling, HAN Xiao-you. Existence and Multiplicity of Solutions for p(x)-Laplacian Equations in RN [J]. Non- linear Anal. 2004. 59(1-2), 17.3-188.
  • 3QIAN Chen-yin, SHEN Zi-fei, YANG Min-bo. Existence of Solutions for p(x)-Laplacian Nonhomogeneous Neumann Problems with Indefinite Weight [J]. Nonlinear Analysis, 2010, 11(1): 446-458.
  • 4RUZICKA M. Electrorheological Fluids= Modeling and Mathematical Theory [M]. Berlin: Springer, 2000.
  • 5BONANNO G, CANDITO P. Three Solutions to A Neumann Problem for Elliptic Equations Involving the p-Laplacian [J]. Arch Math Basel, 2003, 80(4): 424-429.
  • 6BONANNO G, LIVEREA R. Multiplicity Theorems for the Dirichlet Problem Involving the p-Laplacian [J]. Nonlinear Anal, 2003, 54(1): 1-7.
  • 7CHANG Gao, SHEN Zi-fei. Three Solutions for An Obstacle Problem for A Class of Variational-Hemivariational Ine- qualities [J]. Applied Mathematics and Computation, 2009, 215(6): 2063-2069.
  • 8RICCERI B. On A Three Critical Points Theorems [J]. Arch Math Basel, 2000, 75(3) :220-226.
  • 9BONANNO G. A Minimax Inequality and Its Applications to Ordinary Differential Equations [J]. J Math Anal Appl, 2002, 270(1): 210-229.
  • 10FAN Xian ling, ZHAO Dun. On the Spaces L^p(x) (Ω) and W^m·p(x) (Ω) [J]. J Math Anal Appl, 2001, 263(2) : 424-446.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部