期刊文献+

局部凸空间中最佳逼近研究纵览(英文)

A Survey on the Best Approximation in Locally Convex Spaces
下载PDF
导出
摘要 通过对大量文献研究,回顾了最佳逼近论的研究进展.重点讨论了最有意义的可分离局部凸空间最佳逼近问题、以及最佳逼近问题与向量优化、Pareto有效性、多值函数等之间的直接联系. As a part of the approximation theory and its applications in vector spaces, in this research paper the best approximation is reviewed. Special attention is given to the most significant best approximation problems in separated locally convex spaces and to their directly connections with the vector optimization very well represented in this way of study by the Pareto type efficiency and some important links to the multifunctions, starting from an original point of view concerning this matter in topological spaces and being based on adequate references.
出处 《应用泛函分析学报》 CSCD 2005年第2期151-167,共17页 Acta Analysis Functionalis Applicata
关键词 局部凸空间 最佳逼近 Pareto有效性 多值函数 locally convex spaces best approx, imation Pareto efficiency multifunctions
  • 相关文献

参考文献136

  • 1Albinus G. Einige beutrage zur approximationstheorie in metrischen vectorraumen[J]. Wiss Z D Tech Univ Dresden, 1966, 15:1-4.
  • 2Asimov L. Best approximation by gauges on a Banach space[J]. J Math Anal and Appl, 1978, 62:571-580.
  • 3Aubin J P. Pareto minimum principle[A]. Kuhn-Szego Diff. Games and Related Topics[C]. NorthHolland, 1971. 147-563.
  • 4Bacopoulos A, Godini G, Singer I. On best approximation in vector valued norms[J]. Colloq Math Soc Ianos Bolyai, 19, Fourier Analysis and Approx Theory, 1976. 89-100.
  • 5Bacopoulos A, Singer I. On convex vectorial optimization in linear spaces[J]. Journ of Optimization Theory and Appl, 1977, 21(2): 173-188.
  • 6Bacopoulos A, Godini G, Singer I. On infima of sets in the plane and best approximation simultaneous and vectorial in a linear space with two norms [J]. Special Topics of Applied Mathematics, North Holland Publishing Company, 1980. 219-239.
  • 7Barbu V, Precupanu T. Convexity and Optimization in Banach Spaces [M]. Romanian Academy Publishing House and D. Reidel Publishing Company, 1986.
  • 8Bitran G R. Duality for nonlinear multiple criteria optimization problems[J]. J of Optimization Theory and Appl, 1981, 35(3): 367-401.
  • 9Bitran G R, Magnanti T L. The structure of admissible points with respect to cone dominance[J]. J of Optimization Theory and Appl, 1979, 29(4): 574-614.
  • 10Borwein J M. Proper eficient points for maximizations with respect to cones [J]. SIAM Journal on Control and Optimization, 1977, 15(1): 57-63.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部