期刊文献+

含损伤复合材料AGS板的屈曲特性 被引量:18

BUCKLING BEHAVIOR OF COMPOSITE AGS WITH DELAMINATION
下载PDF
导出
摘要 采用有限元数值模拟方法,研究了蒙皮内含分层损伤复合材料格栅加筋板结构(AGS)的稳定性问题。对蒙皮和肋骨分别采用基于Mindlin一阶剪切理论的复合材料层合板单元和层合梁单元来模拟,推导了相应的有限元列式,并通过坐标变换,利用蒙皮与肋骨的几何连续条件,形成了AGS的单元刚度阵和几何刚度阵,建立了含损伤AGS稳定性分析的有限元控制方程。通过典型算例,研究了压缩载荷作用下,分层形状、分层大小、分层深度、肋骨的高度和宽度、布置方式等因素对AGS的稳定性特征的影响。数值结果表明,含分层损伤的AGS具有十分复杂的屈曲性态。屈曲临界力和屈曲模式与分层面积、分层形状、分层深度、肋骨的高度和宽度、布置方式和位置均密切相关。 A finite element method was developed for tbe numerical analysis of advanced grid stiffened structure (AGS), and tbe stability problem of AGS with an embedded delamination was investigated. Based on the Mindlin first-order shear deformation theory, a composite laminates element and a beam element were adopted to model the skin and the stiffener, respectively, The corresponding formulae for finite element analysis were deduced. Bycoordinate transformation and the geometry continuom condition of tbe skin and the stiffener, the element stiffness matrices and geometrical stiffness matrices for the AGS were deduced. The governing equation for the stability problem of the composite grid stiffened plate and shell was established. The effects of configuration, size, and location of the delamination, and the height, the width, the distribution of the stiffeners on the stability cbaracteristics of the AGS subjected to a compressive load are discussed. The numerical investigation indicates that the buckling behavior of the AGS is much more complicated, The buckling load and modes relate to the configuration, size, and location of the delamination, and the heigbt, the width, the distribution of the stiffeners closely.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2005年第4期136-141,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金项目(10302004)
关键词 复合材料 格栅加筋结构 分层损伤 屈曲 composile advanced grid stiffened structure delamination buckling
  • 相关文献

参考文献11

  • 1白瑞祥,陈浩然.含界面脱粘及表板基体开裂损伤的复合材料夹层板非线性稳定性的研究[J].复合材料学报,2002,19(2):80-84. 被引量:13
  • 2白瑞祥,陈浩然,刘远东.分层损伤复合材料加筋层合板屈曲和后屈曲性态研究[J].大连理工大学学报,2003,43(3):274-280. 被引量:18
  • 3Huybrechts S, Meink T E, Wegner P M, etal. Manufacturing theory for advanced grid stiffened structures [J]. Composites Part A: Applied Science and Manufacturing, 2001,33(2): 155-161.
  • 4Meink T E, Gregoreck G. Composite grid vs composite sandwich: A comparison based on payload shroud requirements [A]. In: IEEE Aerospace Conference Proceedings [C].Manhattan Beach: IEEE Aerospace and Electronics Systems Society, 1998.
  • 5Meink T E, Huybrechts S, Ganley J, et al. Effect of varying thickness on the buckling of orthotropic plates [J]. Journal of Composite Materials, 1999, 33(11): 1048-1061.
  • 6Huybrechts S, Hahn E, Meink T E. Grid stiffened structures: A survey of fabrication, analysis and design method [A]. In: International Conference on Composite Materials (ICCM) Proceedings [C]. Paris: The Composites Manufacturing Association (CMA/SME), 1999.
  • 7Jaunky N, Knight N F, Ambur D R. Optimal design of grid stiffened composite panels using global and local buckling analysis [J]. J Aircraft, 1998, 35(3): 478-486.
  • 8Wodesenbet E, Kidane S, Pang S S. Optimization for buckling loads of grid stiffened composite panels [J]. Composite Structures, 2003, 60(2): 159-169.
  • 9Kidanea S, Lia G, Helmsa J, et al. Buckling load analysis of grid stiffened composite cylinders [J]. Composites Part B,2003, 34(1): 1-9.
  • 10Rizzo A R. FEA gap elements choosing the right stiffness [J]. Mechanical Engineering, 1991, 113(6): 57-59.

二级参考文献14

共引文献34

同被引文献210

引证文献18

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部