期刊文献+

微分变换法在动力学响应分析及系统边界参数识别中的应用研究 被引量:2

RESEARCH ON THE APPLICATION OF DIFFERENTIAL TRANSFORM METHOD IN RESPONSE ANALYSIS AND BOUNDARY CONDITION PARAMETERS IDENTIFICATION
下载PDF
导出
摘要 引入求解非线性微分方程的微分变换法,将其推广为广义微分变换法。建立求解一般非线性振动微分方程的一般框架,将此方法用于求解著名的Vanderpol方程。并且将微分变换法推广到结构边界参数识别,以一个典型的悬臂梁边界参数识别为例,对其进行数值仿真和实验研究,并将此方法的实验研究识别结果与用实测频率响应函数法的识别结果作比较。说明该方法具有良好的工程应用价值。 A differential transform method is introduced to solve nonlinear differential equations and extended as a generalized differential transform method. Consequently, a procedure is established to solve nonlinear differential equations for general vibration problems, and to solve the famous Van der pol equation. Then, the proposed differential transform method(DTM) is generalized to identify boundary condition parameters. As an example, a typical cantilever beam is chosen to identify its elastic boundary condition parameters.The numeric simulation and experiment result, the result got by this method and FRF(frequency response function) identification are compared respectively. They prove the proposed method is effective.
出处 《机械强度》 EI CAS CSCD 北大核心 2005年第4期419-424,共6页 Journal of Mechanical Strength
基金 航空基础科学基金资助项目(02B53007) 高等学校博士点基金资助项目(20030699039)~~
关键词 微分变换法 广义微分变换法 边界参数识别 Differential transform method Generalized differential transform method Boundary parameters identification
  • 相关文献

参考文献9

  • 1苏志霄,刘宏昭,李鹏飞,曹惟庆.振动系统结构参数估计的Taylor变换法[J].应用力学学报,2000,17(1):47-53. 被引量:3
  • 2Zhou C Q. Differential transformation and its application for electrical circuits. Wuhan, China: Huazhong University Press, 1986.
  • 3Abdel-Halim Hassan I H. Different applications for the differential transformation in the differential equations. Applied Mathematics and Computation,2002,129:183~201.
  • 4Jang M J, Chen C L, Li L C. On solving the initial-value problems using the differential transformation method. Applied Mathematics and Computation, 2000,115: 145~160.
  • 5Abdel I H, Halim Hassan. On solving some eigenvalue problems by using a differential transformation. Applied Mathematics and Computation,2002,127:1~22.
  • 6Chiou J S. Application of the Taylor transform to nonlinear vibration problems. Journal of Vibration and Acoustics, 1996,118:83~87.
  • 7Rao J S. Advanced theory of vibration. New Delhi, India: Wiley Eastern Limited, 1991.
  • 8赵昕,李杰.转角信息未知条件下的结构参数识别方法研究[J].工程力学,2003,20(4):55-59. 被引量:9
  • 9Wang J H, Liou C M. Experimental identification of mechanical joint parameters. Journal of Vibration and Acoustics, 1991,113:28~36.

二级参考文献21

共引文献10

同被引文献25

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部