期刊文献+

基于组合策略的Lyapunov指数谱的计算 被引量:3

Calculation of Lyapunov Exponents Based on Combination Strategy
原文传递
导出
摘要  分析了基于BP神经网络模型的Lyapunov指数谱计算法存在的不足,提出了一种新的基于组合策略的混沌时间序列Lyapunov指数谱计算方法.由于该方法能够同时逼近给定目标函数的非线性部分与线性部分,因而具有更高的计算精度.最后将新方法应用于Henon映射Lyapunov指数谱的计算中.通过分析与比较,表明该方法具有更高的计算精度及更强的实用性. The defect of the Lyapunov exponents calculation method based on BP neural network model is analyzed,and a novel method to calculate Lyapunov exponents of chaotic time series based on combination strategy is proposed.Because this method can approximate the nonlinear part and linear part of a given objective function at the same time,its calculation preciseness is higher than the method based on BP neural network. In the end, the new method is applied to computing the Lyapunov exponents of Henon map. By means of analyzing and comparing, it shows that the suggested method is more precise and practicable in the calculation of Lyapunov exponents。
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第7期93-97,共5页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(79970043)
关键词 LYAPUNOV指数谱 BP神经网络模型 组合策略 HENON映射 相空间重构 混沌时间序列 Lyapunov exponents BP neural network model combination strategy Henon map reconstruction of phase space; chaotic time series
  • 相关文献

参考文献11

  • 1耿奎.最优加权组合方法探讨[J].数量经济技术经济研究,1998,15(11):44-46. 被引量:12
  • 2田宝国,姜璐,谷可.基于神经网络的Lyapunov指数谱的计算[J].系统工程理论与实践,2001,21(8):9-13. 被引量:18
  • 3Greene J M, Kim J S. The calculation of Lyapunov spectra[J]. Physica D,1987,24(1-3):213-225.
  • 4Wolf A, et al. Determining Lyapunov exponents from a time series[J]. Physica D,1985,16(3):285-317.
  • 5Brown R, Bryant P, Abarbanel. Computing the Lyapunov exponents of a dynamical system from observed time series[J]. Phys Rev A,1991,34(4):2787-2806.
  • 6Packard N H, Crutchifield J P, Farmer J D, et al. Geometry from a time series[J]. Phys. Rev. Lett., 1980,45(6):712-716.
  • 7Takens F, Mane. Detecting strange attractors in Fluid turbulence[A]. Rand D, Young L S. Dynamical Systems and Turbulence[C]. Berlin: Springer, 1981.
  • 8Kantz H, Jaeger L. Improved cost function for modeling of noisy chaotic time series[J]. Physica D,1997,109(1-2):59-60.
  • 9Jackson E A, Kodogeorgion. Entrainment and migration controls of two-dimensional maps[J]. Physica D, 1992,54(3):253-265.
  • 10Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using geometrical construction[J]. Phys Rev A, 1992,45(6):3403-3411.

二级参考文献6

共引文献28

同被引文献53

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部