期刊文献+

按时滞转化的阶段结构SIS传染病模型 被引量:2

A SIS Epidemic Model with Stage-structure and Time Delay
原文传递
导出
摘要 对一类按时滞转化的具有两个阶段结构的SIS传染病模型进行了分析,得到了传染病最终消除和成为地方病的阈值.即当传染率小于该阀值时,传染病最终消除;反之,此种传染病将成为地方病. A SIS epidemic model witb two-stage structure (consistering immature and mature stage) and time delay is studied. The threshold is found, that is, when the infection rate is less than this threshold, the epidemic will die out; otherwise the epidemic will become local epidemic.
出处 《数学的实践与认识》 CSCD 北大核心 2005年第7期159-166,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(10471117) 河南省自然科学基金(0511012800)资助项目
关键词 时滞转化 阶段结构 SIS传染病模型 阔值 全局渐近稳定性 stage-structure threshold epidemic global stability
  • 相关文献

参考文献4

  • 1Walter G Alello. Freedman H 1. A time-delay model of single species growth with stage structure [J].Mathematical Bioscience. 1990. 101.. 139-153.
  • 2Yang X, Chen L, Chen J. Permanence and positive periodic solution for the single-species nonautonomous delay diffusive model[J]. Comput Math Appl, 1996, 32: 109-116.
  • 3Kuang Y. Delay Differential Equation with Application in Population Dynamics[M]. Academic Press. Inc, 1993.
  • 4Wang W. Chen L. A predator-prey system with stage-structure for predator[J]. Computers Math Applic, 1997,8: 83-91.

同被引文献16

  • 1黄玉梅,李树勇,潘杰.具有阶段结构的SIRS传染病模型[J].四川师范大学学报(自然科学版),2005,28(1):31-33. 被引量:10
  • 2胡宝安,陈博文,原存德.具有阶段结构的SIS传染病模型[J].生物数学学报,2005,20(1):58-64. 被引量:20
  • 3朱慧,熊佐亮.一类具有非线性传染率和脉冲接种的SIV传染病模型[J].南昌大学学报(工科版),2007,29(1):58-61. 被引量:5
  • 4Tognetti K. The two stage stochastic model[J]. Math Biosi, 1975,25 : 195-204.
  • 5Yang Kuang. Delay Differential Equation with Applications in Population Dynamics[M]. Academic Press Inc, 1993.
  • 6Wang Wendi, Chen Lansun. A predator-prey system with stage-structure for predator[J]. Computers Math Applic, 1997, (8) : 83-91.
  • 7Song Xinyu, Lansun Chen. Modelling and analysis of a single-species system with stage structure and harvesting[J]. Mathematical and Computer Modeling, 2002,36 : 67-82.
  • 8Xu Dashun, Xiaoqiang Zhao. Dynamics in a periodic competitive model with stage structure [J]. Mathematical Analysis and Applications, 2005,311 : 417-438.
  • 9Aiello W G, Freedman H I. A time-delay model of single-species growth with stage structure[J]. MatheBiosci, 1990,101:139-153.
  • 10E. Beretta, Y. Takeuchi. Convergence results in SIR epi demic model with varying population sizes[J]. Nonlinear Anal. ,1997,28(12):1 909-1 921.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部