期刊文献+

一种基于AF的决策树算法 被引量:2

Study on decision tree algorithm based on autocorrelation function
下载PDF
导出
摘要 属性序列不同于一般的线性回归模型,其样本点之间存在着一定的相依结构,使得常用的探测异常值的方法,如数据删除、单点求导等,对时间序列而言效果不佳。为了探测时间序列中的强影响点,介绍了同时对几个点作微小扰动时自相关函数(AF)的扰动理论。从应用角度提出一种新的决策树方法,实验结果进一步证实,自相关决策树具有全面性与精确性,从而为进一步实现智能信息检索提供了一种个性化的高效信息检索工具。 Attribute sequence is different from common linear regression model. The common method of detecting abnormal value such as data delete, single point derivation does not have good effectiveness for attribute sequence. In order to detect the strong influence points in attribute sequence, this paper introduces the perturbation theory of autocorrelation function in the mean time having several minute perturbations, On the basis of these, the paper puts forward new decision tree. The experiment and simulation show the effectiveness and accuracy of the decision tree. And the paper presents an improved implement of intelligent information retrieval for people.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第7期1292-1296,共5页 Systems Engineering and Electronics
关键词 自相关函数 决策树 扰动理论 autocorrelation function decision tree theory of perturbation
  • 相关文献

参考文献5

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[J]. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington,D. C: ACM Press, 1993: 207- 216.
  • 2李娅,陈飞,陈宏,王刚.时间序列自相关函数的局部影响分析[J].云南大学学报(自然科学版),2002,24(6):409-413. 被引量:2
  • 3Kuok C, Fu A, Wong M. Mining fuzzy association rules in databases [J]. Sigmod Record, 1998, 27(1): 323-330.
  • 4Srikant R, Agrawal R. Mining quantitative association rules in large relational tables[J]. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Montreal Quebec Canada:ACM Press, 1996: 3-12.
  • 5Yuan-Yih Hsu, Lu, F C, Chien Y, et al. An Expert system for location distribution system Faults[J ].IEEE Trans. on Power Delivery, 2001,6(1): 26-29.

二级参考文献3

共引文献1

同被引文献40

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部