期刊文献+

基于层次化算法在欧氏空间不标定重构三维场景 被引量:4

Uncalibrated Euclidean 3D Reconstruction Based on Stratification Algorithm
下载PDF
导出
摘要 研究一种由彩色编码投影仪及数码摄像机组成的不标定三维场景重构技术,在三维场景重构过程中,只有投影仪的参数需事先标定,而摄像机的内外参数在三维重构过程中不需标定且可随场景的不同而变化。基于层次化算法,仅需单幅三维图像就可实现对三维未知场景进行不标定欧氏重构。详细地叙述了该种不标定算法,并进行了实验验证。 A method of uncalibrated 3D Euclidean reconstruction is investigated based on a machine vision system consisting of a color encoded projector and a digital camera. In the 3D reconstruction, only the parameters of the projector are afflicted with hard calibration beforehand. The intrinsic and extrinsic parameters of the camera are free of calibration, and could be changed with the variation of the scene 3D construction. With a single image of the scene, its Euclidean 3D reconstruction can be obtained by using the stratification algorithm, which is detailed and testified by an experiment.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第7期710-714,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50275049) 合肥工业大学引进人才专项(RC2001)资助项目。
关键词 欧氏空间 层次化算法 不标定三维重构 Euclidean space Stratification algorithm Uncalibrated 3D reconstruction
  • 相关文献

参考文献10

  • 1M.Pollefeys, R.Koch, L.V.Gool. Self-calibration and metric reconstruction in spite of varying and unknown intrinsic camera parameters. International Journal of Computer Vision, 1999, 32(1):7~25.
  • 2A.Fusiello. Uncalibrated Euclidean reconstruction: a review. Image and Vision Computing, 2000, 18:555~563.
  • 3D.Fofi, J.Salvi, E.M.Mouaddib. Euclidean reconstruction by means of an uncalibrated structured light sensor. 4th. Ibero-American Symposium on Pattern Recognition (SIARP′2000), Lisboa, Portugal, September 2000, 159~170.
  • 4O.Faugeras. Stratification of three-dimensional vision: projective, affine, and metric representations. Journal of the Optical Society of America A, 1994, 12(3):465~484.
  • 5M.Pollefeys, L.Van Gool. A stratified approach to metric self-calibration. Proceedings of the Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA IEEE Computer Society Press, June 1997, 407~412.
  • 6Arne Henrichsen. 3D reconstruction and camera calibration from 2D images. University of Cape Town, 2000, 10:7~24,73~88.
  • 7R. I. Hartley, In defence of the 8-point algorithm. IEEE Proc. of Fifth International Conference on Computer Vision, 1995, 1064~1070.
  • 8Z.Y.Zhang. Determining the epipolar geometry and its uncertainty: a review. The International Journal of Computer Vision, 1998, 27(2):161~195. Also Research Report No. 2927, INRIA Sophia~Antipolis.
  • 9M.Pollefeys. Self-calibration and metric 3D reconstruction from uncalibrated image sequences. PhD thesis, ESAT-PSI, K.U.Leuven, 1999.
  • 10S.Laveau, O.Faugeras. Oriented projective geometry for computer vision. In B.Buxton and R.Cipolla, editors, Computer-Vision-ECCV'96, Lecture Notes in Computer Science, Springer-Verlag, 1996, 1064:147~156.

同被引文献28

  • 1王社阳,宋申民,强文义,陈兴林.利用空间矩提取亚象素角特征[J].自动化学报,2005,31(5):713-719. 被引量:4
  • 2闫龙,赵正旭,周以齐.图像质量对Harris角点检测的影响研究[J].山东大学学报(工学版),2006,36(5):21-24. 被引量:14
  • 3张广军,田叙.结构光三维视觉及其在工业中的应用[J].北京航空航天大学学报,1996,22(6):650-654. 被引量:16
  • 4王付新,黄毓瑜,孟偲,王田苗.三维重建中特征点提取算法的研究与实现[J].工程图学学报,2007,28(3):91-96. 被引量:20
  • 5Batlle J, Mouaddib E, Salvi J. Recent progress in coded structured light as a technique to solve the correspondence problem: a sur-vey [ J ]. Patten Recognition, 1998,31 (7) :963 -982.
  • 6F. Jessie, M. Williams, N. J. A Sloane, Pseudo-Random Sequences and Arrays [ J ]. Proceedings of the IEEE, 1976,64(12) :1 715- 1 729.
  • 7Smith S M. Feature based image sequence understanding [ D]. Oxford, UK : Oxford University, 1992.
  • 8Harris C G, Stephens M J. A Combined Comer and Edge Detector, Proceedings Fourth Alvey Vision Conference. Manchester, 1988 : 147 - 151.
  • 9闰敬文.数字图像处理(MATLAB版)[M].北京:国防工业出版社,2007.
  • 10Rong-sheng Lu ,Yong-bin Zhang. Uncalibrated Euclidean 3D Reconstruction from a Single Encoded Image [ A]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007,49 ( 3 ) :628 - 636.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部