期刊文献+

关于非负不可约矩阵的广义Perron补的一些性质 被引量:1

SOME PROPERTIES INVOLVING GENERALIZED PERRON COMPLEMENT OF NONNEGATIVE AND IRREDUCIBLE MATRICES
原文传递
导出
摘要 1989年Meyer为计算马尔可夫链的平稳分布向量构造了一个算法,首次提出非负不可约矩阵的Perron补的概念.本文给出非负不可约矩阵A 的广义Perron补若干性质,并且证明当矩阵A是不可约逆M-矩阵,其广义Perron补也是不可约逆M-矩阵. The concept of the Perron complement of a nonnegative and.irreducible matrix was introduced by Meyer in 1989 and was used to construct an algorithm for computing the stationary distribution vector for Markov chain. In this paper we consider some beautiful properties of the generalized Perron complement of a nonnegative and irreducible matrix A and it is shown that the generalized Perron complement of a matrix A is still an irreducible inverse M-matrix when A is an irreducible inverse M-matrix.
出处 《应用数学学报》 CSCD 北大核心 2005年第3期435-440,共6页 Acta Mathematicae Applicatae Sinica
基金 国家重点自然资金(10231060)资助项目
关键词 SCHUR补 Perron补 广义Perron补 逆M-矩阵 Schur complement Perron complement generalized Perron complement inverse M-matrices
  • 相关文献

参考文献8

  • 1Lu Linzhang. Perron Complement and Perron Root. Linear Algebra Appl., 2002, 341:239-248.
  • 2Meyer C D. Uncoupling in the Perron Eigenvector Problem. Linear Algebra Appl., 1989, 114/115:69-94.
  • 3Bapat R B, Raghavan T E S. Nonnegative Matrices and Applications. Cambridge: Cambridge University Press, 1997.
  • 4Bhatia R. Matrx Analysis. New York: Springer-Verlag, 1997.
  • 5Berman A, PLemmons R J. Nonnegative Matrices in the Mathematical Science. New York: Academic,1979.
  • 6Johnson C R. Inverse M-matrices. Linear Algebra Appl., 1982, 47:195-216.
  • 7Neuman M. Inverse of Perron Complements of Inverse M-matrices. Linear Algebra Appl., 2002, 313:163-171.
  • 8Crabtree D E. Applications of M-matrices to Nonnegative Matrices. Duke Math. J., 1966, 33:197-208.

同被引文献9

  • 1Neuman M. Inverse of perron complements of inverse M-matrices[J]. Linear Algebra Appl. 2002.313 : 163-171.
  • 2Lu linzhang. Perron complement and perron root[J]. Linear Algebra Appl, 2002,341: 239-248.
  • 3Meyer C D. Uncoupling in the perron eigenvector problem[J]. Linear Algebra Appl, 1989,114/115: 69-94.
  • 4Gregery A Johnson. A Generalization of No-Matrices[J]. Linear Algebra Appl.1982,48:201-217.
  • 5Ying Chen. Notes on Fo-Matrices[J]. Linear Algebra Appl,1990,142: 167-170.
  • 6Charles R Johnson. Inverse M-Matrices[J]. Linear Algebra Appl, 1982,47: 195-216.
  • 7Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Science[M]. New York: Academic, 1979.
  • 8Johnson C R. Inverse M-matrices[J]. Linear Algebra Appl, 1982.47: 195-216.
  • 9Gregery A Johnson. Inverse No-Matrices[J]. Linear Algebra Appl, 1985,64:215-222.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部