摘要
1989年Meyer为计算马尔可夫链的平稳分布向量构造了一个算法,首次提出非负不可约矩阵的Perron补的概念.本文给出非负不可约矩阵A 的广义Perron补若干性质,并且证明当矩阵A是不可约逆M-矩阵,其广义Perron补也是不可约逆M-矩阵.
The concept of the Perron complement of a nonnegative and.irreducible matrix was introduced by Meyer in 1989 and was used to construct an algorithm for computing the stationary distribution vector for Markov chain. In this paper we consider some beautiful properties of the generalized Perron complement of a nonnegative and irreducible matrix A and it is shown that the generalized Perron complement of a matrix A is still an irreducible inverse M-matrix when A is an irreducible inverse M-matrix.
出处
《应用数学学报》
CSCD
北大核心
2005年第3期435-440,共6页
Acta Mathematicae Applicatae Sinica
基金
国家重点自然资金(10231060)资助项目