期刊文献+

时滞反馈混沌同步及其抗噪优越性 被引量:1

Time Lag Feedback Chaos Synchronization and Its Advantage for Noise Reduction
下载PDF
导出
摘要 噪声抑制是混沌同步通信急于要解决的关键问题之一。混沌系统的反馈同步一般采用非时滞反馈方式,该文提出了混沌系统时滞反馈同步抑噪的方法,并以Lorenz混沌系统为例,证明了驱动系统和响应系统均为Lorenz混沌系统时,采用时滞反馈控制,驱动系统和响应系统同步稳定的充分条件。文中将时滞反馈控制同步用于噪声抑制,表明效果比一般同步方式好很多。通过模拟存在信道噪声的情况下,采用Lorenz系统用参数调制进行信号传输,证实了时滞反馈同步的抗噪优越性。 Noise reduction is one of the key questions needed to be solved in chaos synchronization communication. The feedback synchronization of chaotic systems commonly is nontime-lag feedback synchronization. In this paper, we present a method of time lag feedback synchronization of chaotic systems. Taking Lorenz chaotic system as a example, we have proved the sufficient condition of synchronization stability by time lag feedback control method between driver system and response system, when driver system and response system are all Lorenz system. Then, taking the method of time lag feedback synchronization to eliminate noise effect, indicate that it is much better than common synchronization method. By simulating Lorenz system parameter modulation signal transmission through the channel existing noise, we can see the noise reduction advantage of time lag feedback chaos synchronization.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期452-455,共4页 Journal of University of Electronic Science and Technology of China
关键词 LORENZ系统 时滞反馈 混沌同步 参数调制 Lorenz system time lag feedback chaos synchronization parameter modulation
  • 相关文献

参考文献6

  • 1Pecora L M, Carrol T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990, 64(8): 821-824.
  • 2Carrol T L, Pecora L M. Synchronizating chaotic circuits[J]. IEEE Trans. Curcuits and Systems, 1991, 38(4): 453-456.
  • 3Carrol T L. Noise-robust synchronized chaotic communications[J]. IEEE Trans. Curcuits and Systems I, 2001, 48(12):1 519-1 522.
  • 4Kocarev L, Parliz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J]. Phys Rew Lett, 1996, 76(11): 1 816-1 819.
  • 5Parliz U, Junge L, Kocarev L. Synchronization-based parameter estimation from time series[J]. Phys Rew E, 1996,54(6): 6 253-6 259.
  • 6Maybhate A, Amritkar R E. Use of synchronization and adaptive control in parameter estimation from a time series[J].Phys Rew E, 1999, 59(1): 284-293.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部