摘要
为提高神经网络的泛化能力,针对以均方误差为适应度的PSO算法在训练神经网络时会产生一定的过拟合问题,提出对均方误差和误差分布均匀度进行信息融合,构成复合适应度作为训练指标.实验结果表明,该方法可使网络的泛化能力得到明显的改善.
The over fitting arises if the PSO(particle swarm optimization) algorithm whose fitness is mean squared eviation is applied in training neural network. In order to improve generalization capacity of feedforward neural network. The compound fitness based on information merging of mean square deviation and error uniformity is proposed as the training index of PSO. The results show that the approach can improve the generalization capacity of feedforward neural networks remarkably.
出处
《控制与决策》
EI
CSCD
北大核心
2005年第8期958-960,共3页
Control and Decision
基金
天津市自然科学基金重点项目(033803311)
天津市高等学校科技发展基金项目(20041705)
关键词
微粒群算法
神经网络
复合适应度
泛化能力
Particle swarm optimization Neural network Compound fitness Generalization ability