期刊文献+

基于动态背景构造的视频运动对象自动分割 被引量:19

Automatic Segmentation of Moving Objects in Video Sequences Based on Dynamic Background Construction
下载PDF
导出
摘要 提出了一种基于动态背景构造的视频运动对象自动分割算法.首先,基于前景分离的动态背景构造技术使用与当前帧相邻的前后多帧图像中的背景信息准确地构造当前背景;然后,通过背景消除分割出运动对象,同时对静态前景区域(即帧间静止的运动对象区域)进行检测并将其合并到已分割出的对象区域上,从而获得完整的对象区域;最后,以对象区域的边缘为初始位置,使用以彩色梯度为外部能量的活动轮廓(snake)算法获得精确的对象轮廓.实验结果表明,该文算法有效地克服了显露背景和对象的不规则运动对分割准确度的影响,能够准确地实现视频运动对象的自动分割. In this paper, an automatic segmentation algorithm for moving objects in video sequences based on dynamic background construction is proposed. First, based on a coarse separation of foreground from images, the dynamic background construction technique, an accurate background for current frame with information in temporally adjacent frames is constructed.Then, the intact moving objects' areas are obtained by subtracting the constructed background from the current frame and merging the static foreground areas (namely, parts of objects stopping moving between adjacent frames) detected using the temporal information. Finally, the accurate objects' contours are extracted by active contour (snake) using color gradient as its external energy. Experiments demonstrate that the proposed method is robust to the influence of uncovered background and objects' irregular motion, and able to extract moving objects successfully from video sequences with dynamic background.
出处 《计算机学报》 EI CSCD 北大核心 2005年第8期1386-1392,共7页 Chinese Journal of Computers
基金 北京市科技计划项目(E0004024040231) 国家自然科学基金项目(60302028 60473002) 北京市自然科学基金重点项目(4051004)资助
关键词 对象分割 动态背景构造 彩色梯度 活动轮廓 object segmentation dynamic background construction color gradient active contour
  • 相关文献

参考文献11

  • 1Neri A., Colonnese S., Russo G., Talone P.. Automatic moving object and background separation. Signal Processing, 1998, 66: 219~232.
  • 2Aach T., Kaup A.. Statistical model-based change detection in moving video. Signal Processing, 1993, 31: 165~180.
  • 3Guo J., Kim J.W., Kuo C.-C. Jay.. Fast and accurate moving object extraction technique for MPEG-4 object-based video coding. In: Proceedings of SPIE Visual Communication and Image Processing, San Jose, CA, 1999, 3653: 1210~1221.
  • 4Tsarg Y., Averbuch A.. Automatic segmentation of moving objects in video sequences: A region labeling approach. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(7): 597~612.
  • 5Patras I., Hendriks E.A., Lagendijk R.L.. Video segmentation by map labeling of watershed segments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 326~332.
  • 6Wang D.. Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 539~546.
  • 7Kim C., Hwang J.N.. Fast and automatic video object segmentation and tracking for content-based applications. IEEE Transactions on Circuits Systems for Video Technology, 2002, 12(2): 122~129.
  • 8贾振堂,李生平,贺贵明,田惠.一种基于运动边缘检测的视频对象分割新算法[J].计算机研究与发展,2003,40(5):684-689. 被引量:9
  • 9Sonka M., Hlavac V., Boyle R.. Image Processing, Analysis, and Machine Vision. Second Edition. USA: Brook/Cole Publishing, 1998.
  • 10Kass M., Witkin A., Terzopoulos D.. Snakes: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321~331.

二级参考文献6

  • 1贾得云.机器视觉[M].北京:科学出版社,2000..
  • 2Decnin Wang. Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Trans on Circuits and Systems for Video Technology, 1998, 8(5): 539-542.
  • 3Changick Kim, Jenq-Neng Hwang. A fast and robust moving object segment in video sequences. IEEE Computer Society,1999. 131-134.
  • 4Ani K, Yu Zhong. Deformable template models: A review. Signal Processing, 1998, 109-129.
  • 5A Neri, S Colonuese, G Russo et al. Automatic moving object and background separation. Signal Processing, 1998, 219-232.
  • 6季白杨,陈纯,钱英.视频分割技术的发展[J].计算机研究与发展,2001,38(1):36-42. 被引量:36

共引文献8

同被引文献210

引证文献19

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部