期刊文献+

线性齐次偏微分方程组吴特征列和Janet基的等价性

EQUALITY BETWEEN WU-CHARACTERISTIC SETS AND JANET BASES FOR LINEAR HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文简单介绍了吴微分特征列和Janet基,利用线性齐次微分方程组既约化基的概念,证明了线性齐次偏微分方程组的正规化的吴微分特征列和正规化的、自约化的Janet基均是既约化基,从而由既约化基的唯一性,得到了它们的等价性定理。 First,Wu-characteristic sets and Janet bases for linear homogeneous partial differential equations(LHPDES) are introduced, and then using the concept of reduced bases for LHPDES, we draw a conclusion that both canonical Wu-characteristic set and canonical-autoreduced Janet bases for LHPDES are the reduced bases, and equality between them is obtained according to the uniqueness of the reduced bases.
出处 《系统科学与数学》 CSCD 北大核心 2005年第4期429-438,共10页 Journal of Systems Science and Mathematical Sciences
基金 杭州电子科技大学科研启动基金(KYS071505001)
关键词 线性齐次微分方程组 吴微分特征列 Janet基 既约化基 偏微分方程组 等价性定理 特征列 齐次 线性 正规化 Linear homogeneous partial differential equations, Wu-characteristic set,Janet bases, reduced bases
  • 相关文献

参考文献9

  • 1Bluman G W and Kumei S. Symmetries and Differential Equations. New York: Springer-Verlag,1989.
  • 2Olver P J. Applications of Lie Groups to differential Equations. New York: Springer-Verlag, 1993.
  • 3Schwarz F and Augustin S. An algorithm for determining the size of symmetry groups. Computing,1992, 49: 95-115.
  • 4Schwarz F. Janet bases for symmetry groups. Proceedings of ASCM 98: 221-234.
  • 5Wu Wentsiin. On the Foundation of Algebraic differential Geometry. Mathematics Mechanization Research Preprints, 1989, 3: 1-29.
  • 6张善卿,李志斌,潘素起.线性齐次偏微分方程组的既约化基[J].系统科学与数学,2004,24(2):163-168. 被引量:1
  • 7Janet M. Sur les Systemes d'Equationa aux Derivees Partielles. J.Math.Pure.Appl., 1920, 3: 65.
  • 8Thomas J. Differential Systems. New York: American Mathematical Society, 1937.
  • 9陈玉福.[D].大连理工大学,1998,6.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部