期刊文献+

基于理想推进器理论的尾鳍推力与效率估算 被引量:20

CALCULATIONAL METHOD OF THE PROPULSIVE FORCE AND EFFICIENCY OF TAIL-FIN PROPULSION BASED ON IDEAL PROPELLER THEORY
下载PDF
导出
摘要 鱼类尾鳍的动力学问题已经得到广泛研究,但是在进行尾鳍推进器的设计时,还缺乏一种简单有效的设计和估算方法,将尾鳍的运动参数与推力、效率联系起来;在观测和分析尾鳍流场的基础上,研究了2自由度尾鳍推进器的流场结构和推力形成原因;将理想推进器理论应用于尾鳍推进器的推力和效率计算,提出了射流及其诱导速度的量化假设,建立了推力、效率与运动参数、斯特劳哈尔数之间的函数关系;运用该函数对海洋动物的典型运动状态进行了估算,估算结果与动物观测现象基本吻合,该方法在机器鱼模型设计中得到了应用和验证。 While the dynamics of the fish tail fin is widely studied, the design of the tail fin propeller lacks a kind of simple valid and estimation method, to link the motion parameters of the tail fin with the propulsive force and efficiency. Based on observation and analysis of vorticity, the flows field structure of 2-DOF tail fin propellers and the thrust formation reason are studied. The ideal propeller theory is applied to the calculation of the propulsive force and efficiency of the tail-fin propulsion. The jet flow and induced velocity is estimated. The function among propulsive force, locomotion parameter and strouhal number is built, as well as the efficiency. The calculation results are in accordance with the observation and experimental results offish robot. And the calculation method is testified by application in fish robot design.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第8期18-23,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金重点(10332040)国防基础科研基金(J1300C1004)资助项目。
关键词 仿生学 推进 效率 机器鱼 尾鳍 Bionics Propulsion Efficiency Robotics-fish Tail-fin
  • 相关文献

参考文献14

  • 1Triantafyllou M S, Triantafyllou G S. An efficient swimming machine. Scientific American, 1995(5): 64~70.
  • 2Anderson J M, Kerrebrock P A. The vorticity control unmanned undersea vehicle(VCUUV)-an autonomous vehicle employing fish swimming propulsion and maneuvering. In: Proc. 10th Int. Symp. Unmanned Untethered Submersible Technology, NH, 1997, 9:189~195.
  • 3Fukuda T. Distributed type of actuators of shape memory alloy and its application to underwater mobile robotic mechanisms. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, 1990:1 316~1 321.
  • 4Fukuda T. Mechanism and swimming experiment of micro mobile robot in water. In: Proceedings of the 1994 IEEE Conference on Robotics and Automation, 1994: 814~819.
  • 5Naomi K. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. Oceanic Engineering, 2000(25): 121~129.
  • 6Naomi K. Application of swimming functions of aquatic animals to autonomous underwater vehicles. In: Oceans Conference Record, 1999, 9:1 418~1 424.
  • 7Naomi K, Tadahiko I. Guidance and control of fish robot with apparatus of pectoral fin motion. In: Proceedings of the International Conference on Robotics and Automation,1998, 5:446~451.
  • 8Guo S X, Fukuda T, Asaka K. Fish-like underwater microrobot with 3 DOF. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2002(1): 738~743.
  • 9Guo S X, Fukuda T, Oguro K. Development of an artificial fish microrobot. In: Proceedings of the International Symposium on Micro Machine and Human Science, 1999,11: 35~140.
  • 10Guo S X, Sugimoto K, Hata S. A new type of underwater fish-like microrobot. In: Proceedings of the International Conference on Intelligent Robots and Systems, 2000(2):867~872.

二级参考文献1

共引文献49

同被引文献171

引证文献20

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部