摘要
传统的图像过渡区提取算法基于梯度算子,算法对噪声敏感且受剪切值Llow与Lhigh的限制.通过对过渡区像素属性的深入分析,提出基于局部复杂度的过渡区直接提取算法.局部复杂度的滤波作用提高了算法的抗噪性,直接提取则使算法摆脱了对Llow与Lhigh的依赖.实验结果表明,局部复杂度方法优于传统的基于梯度算子的过渡区间接提取方法.
Traditional transition region extraction methods are based on gradient operator. They are sensitive to noise and restricted by Llow and Lhigh. By analyzing properties of transition regions, a novel local complexity based on transition region extraction method (C-TREM) was presented. C-TREM is a direct method to extract transition regions. The filtering ability of local complexity improves the ability of C-TREM to deal with noises. C-TREM depends no more on Llow and Lhigh. Experimental results demonstrate that C-TREM significantly outperforms the conventional gradient-based transition region extraction methods (G-TREM)
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2005年第4期312-316,共5页
Journal of Infrared and Millimeter Waves
基金
国家自然科学基金重点资助项目(60135020)
关键词
图像分割
局部复杂度
过渡区
阈值
梯度
image segmentation
local complexity
transition region
threshold
gradient