期刊文献+

惰性颗粒抑制CH_4/O_2/N_2爆炸过程的二维数值模拟与实验验证 被引量:3

Two-Dimensional Numerical Simulation and Experimental Validation of CH_4/O_2/N_2 Explosion Suppression by Inert Particles
下载PDF
导出
摘要 使用带基元化学反应的两相Eu ler方程,对惰性颗粒抑制高温火团诱导的CH4/O2/N2爆炸过程进行了二维数值模拟.其中,采用全耦合二阶精度的TVD格式求解气相方程,采用M acCorm ack格式求解惰性颗粒相方程,同时用分步方法处理方程组的耦合刚性,用Gear隐式方法处理化学反应刚性.计算并讨论了不同颗粒相浓度条件下,气相压力场、气相密度和颗粒相浓度的分布、爆炸衰减的气相结构以及两相间的能量传递.结果表明,惰性颗粒相的堆积可阻碍气相爆炸波的传播,使其衰减为引导激波,引导激波继续向颗粒相传递能量,而进一步衰减最终使得爆炸波被抑制.随着颗粒相浓度的增大,爆炸波的抑制更明显.计算结果与大型水平管的实验结果进行了比较,定性证明了计算的合理性. A two-dimensional CH4/O2/N2 explosion suppression process by inert particles was simulated numberically by using two-phase Euler equations coupled with element chemical reactions. The gas phase equations were solved with the second order global coupled TVD scheme;the solid phase equations with inert particles were solved with the MacCormack scheme;a splitting method was adopted to treat the stiffness of coupled equations;the implicit Gear algorithm was used to treat the chemical stiffness. The present paper computed and discussed the two-dimensional gas phase pressure field, the distributions of gas and particle phase cloud density, the structures of gaseous species and temperature, and the energy transfer between the two phases under the different inert particle cloud densities. The results show that due to the accumulation of inert particles the explosion wave is dragged, and become an induced shock wave. The induced shock wave is further attenuated and suppressed as the energy transfers from gas-phase to particle-phase. When the particle cloud density is increased, the explosion suppression is more obvious. A qualitative agreement is obtained by comparing the computed results with large-scale duct experimental results.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2005年第4期329-335,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50276057) 国家自然科学基金资助项目(19832030).
关键词 爆炸抑制 惰性颗粒 基元化学反应 两相化学反应流 explosion suppression, inert particles element chemical reaction two-phase reactive flow
  • 相关文献

参考文献10

  • 1董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002,8(1):44-48. 被引量:48
  • 2董刚,范宝春,谢波.氢气-空气混合物中瞬态爆轰过程的二维数值模拟[J].高压物理学报,2004,18(1):40-46. 被引量:22
  • 3Laffitte P, Bouchet R. Suppression of explosion wave in gaseous mixtures by means of fine powders [A].In: 7th Symposium (International) on Combustion[C].Pittsburgh,London:Combustion Inst,1959.504-508.
  • 4Kauffman C W, Wolanski P, Arisoy A, et al.Dust,Hybrid, and Dusty Detonations [A].In:Dynamics of shock wave, Explosion and Defonations,Progress in Astronauties and Aeronautics[C].New York:AIAA,1984.
  • 5Loth E, Sivier S, Baum J. Dusty detonation simulations with adaptive unstructured finite elements [J].AIAA J,1997, 35(6): 1018-1024.
  • 6范宝春,李鸿志.惰性颗粒抑爆过程的数值模拟[J].爆炸与冲击,2000,20(3):208-214. 被引量:17
  • 7范宝春,邢晓江,李鸿志.可燃介质中高温火团诱导的爆炸及其抑制[J].兵工学报,2001,22(2):195-198. 被引量:3
  • 8Gordon S,Mcbride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications [R].NASA-RP-1311, 1994.
  • 9Kee R J, Rupley F M, Miller J A. CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetic[R]. Sandia Report, SAND89-8009,1989.
  • 10Hindmarsh A C. ODEPACK,a systematized collection of ODE solvers [A]. In:Scientific Computing[C].Amsterdam: North-Holland,1983.55-64.

二级参考文献22

  • 1[1]Miller J A,Bowman C T.Mechanism and modeling of nitrogen chemistry in combustion[J].Prog.Energy Combust.Sci.,1989,15:287-338
  • 2[2]Glarborg P,Alzueta M U Dun-Johansen K et al.Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J].Combust.Flame,1998,115:1-27
  • 3[3]Westbrook C K,Dryer F L.Chemical kinetic modeling of hydrocarbon combustion[J].Prog.Energy Combust.Sci.,1984,10:1-57
  • 4[4]Sher E,Refael S.A simplifie reaction scheme for the combustion of hydrogen enriched methane/air flame[J].Combust.Sci.Tech.,1988,59:371-389
  • 5[5]Miller J A,Kee R J,Westbrook C K.Chemical kinetics and combustion modeling[J].Annu.Rev.Phys.Chem.,1990,41:345-387
  • 6[6]Glarborg P,Miller J A,Kee R J.Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors[J].Combust.Flame,1986,65:177-202
  • 7[7]Grcar J F,Kee R J,Smooke M D et al.A hybrid newton/time-integration procedure for the solution of stead,laminar,one-dimensional,premixed flames[R].21st Symp.(inter.) Combust.,the Combust.Inst.Pittsburgh,1986.1773-1782
  • 8[8]Andrews G E,Bradley D.Determination of burning velocity by double ignition in a closed vessel[J].Combust.Flame,1973,20:77-89
  • 9[9]Gunther R,Janish G.Measurements of burning velocity in a flat flame front[J].Combust.Flame,1972,19:49-53
  • 10[10]Lindow R.Eine verbesserte brennermethode zur bestimmung der laminaren flammengeschwindigkeiten von brenngas/luft-gemischen[J].Brennstaff Warme Kraft,1968,20:8-14

共引文献83

同被引文献66

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部