期刊文献+

基于免疫加权支持向量机方法的短期负荷预测 被引量:2

An immune weighted support vector machines approach for short-term load forecasting
下载PDF
导出
摘要 在对支持向量机(SVM)方法进行分析的基础上,提出了一种免疫加权支持向量机(IWSVM)方法来预测电力系统短期负荷。其中根据各样本重要性的不同,引入了加权支持向量机方法,然后利用免疫规划算法对其进行参数优化。免疫规划算法利用浓度和个体多样性保持机制进行免疫调节,有效地克服了未成熟收敛现象,提高了群体的多样性。电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,所提免疫加权支持向量机方法具有更高的预测精度。 The paper presented an immune weighted support vector machines (IWSVM) method for short-term load forecasting. The weighted support vector machines method was introduced to express the differences among the training samples. The immune programming algorithm, inspired by the immune system of human and other mammals, was used to optimize the parameters of weighted support vector machines. The algorithm has the advantage in preventing premature convergence and promoting population diversity. The forecasting results demonstrate that the proposed method has higher forecast precision for short-term load forecasting.
出处 《中国电力》 CSCD 北大核心 2005年第8期15-18,共4页 Electric Power
关键词 短期负荷预测 支持向量机 免疫规划算法 short-term load forecasting support vector machines (SVM) immune programming algorithm
  • 相关文献

参考文献7

  • 1MASTERS T. Neural, novel & hybrid algorithms for time series prediction [ M ]. Chichester: John Wiley & Sons. Inc, 1995.
  • 2HO K H, HSU Y Y, CHEN C F. Short-term load forecasting of Taiwan power system using a knowledge-based expert system [J ]. IEEE Transactions on Power Systems, 1990,5(4): 1214-1221.
  • 3HIPPERT H S, PEFREIRA C E, SOUZA R C. Neural network for short-term load forecasting: a review and evaluation [ J ]. IEEE Transactions on Power Systems, 2001,16 (2): 44-54.
  • 4李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59. 被引量:279
  • 5SHEVADE S K, KEERTHI S S, BHATTACHARYY C, et al.Improvements to SMO algorithm for SVM regression [ J ]. IEEE Trans. on Neural Network, 2000,11 (5): 1188-1193.
  • 6CHAPELLE O, VAPNIK V. Choosing multiple parameters for support vector machines [R]. New York :AT & T Research Labs,2001.
  • 7王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351

二级参考文献11

  • 1Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 2Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 3Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 4Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 5Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 6Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 7Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.
  • 8Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of NNSP '97,Amelia Island,FL,1997.
  • 9Smola A J, Scholkopf B. A tutorial on support vector regression[R].NeuroCOLT Tech. Rep.TR 1998-030,Royal Holloway College,London, U.K,1998.
  • 10Shevade S K, Keerthi S S, Bhattcharyy C, et al. Improvements to SMO algorithm for SVM regression[J]. IEEE Trans. on Neural Network, 2000,11(5): 1188-1193.

共引文献628

同被引文献27

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部